Skip to main navigation menu Skip to main content Skip to site footer

Vocal parameters to determine severity of voice disorders

Parámetros vocales para definir la severidad de una disfonía


Portada Vol. 2, Num. 2.
Open | Download


Section
Research Article

How to Cite
1.
Vocal parameters to determine severity of voice disorders. Rev. Investig. Innov. Cienc. Salud [Internet]. 2020 Dec. 28 [cited 2024 Dec. 22];2(2):14–30. Available from: https://riics.info/index.php/RCMC/article/view/39

Dimensions
PlumX
Carlos Alberto Calvache-Mora

    Introduction: the severity of dysphonia shows the degree of alteration that a voice has in relation to all the physiological processes involved in the production of sound. It is essential to determine the level of severity to establish a program with the set of exercises required for a proper rehabilitation.

    Objective: to understand if the behavior of the different aerodynamic, electroglottographic, acoustic, and vocal self-report parameters allows, or not, to determine the severity of dysphonia.

    Method: 55 subjects with different types of dysphonia were evaluated according to aerodynamic, electroglottographic, acoustic, and vocal self-report parameters. The sample was divided into three groups in relation to the severity degree of the pathology. An analysis of variance was applied to compare the behavior of dependent variables with the severity levels of dysphonia. The Post hoc test (Tukey) was applied to the significant variables to determine the differences between the severity levels.

    Results: it is possible to determine the level of severity of dysphonia from acoustic parameters such as CPP, HNR, and the ratio of spectral slope 1 / 5-5 / 8Khz. It is also possible to use voice self-report questionnaires such as the VOISS, the VHI, and the VTDS.


    Article visits 2153 | PDF visits 1921


    1. Szkiełkowska A, Krasnodębska P, Miaśkiewicz B, Włodarczyk E, Domeracka-Kolodziej A, Skarżyński H. Mucosal wave measurements in the diagnosis of functional dysphonia. Otolaryngol Pol = Polish Otolaryngol. 2019 Ag 2;73(6):1–7.DOI: https://doi.org/10.5604/01.3001.0013.3215
    2. Snow G, Guardiani E. Movement Disorders and Voice. Vol. 52, Otolaryngologic Clinics of North America. W.B. Saunders; 2019 Ag;52(4):759–67. DOI: https://doi.org/10.1016/j.otc.2019.03.018
    3. Kosztyła-Hojna B, Moskal D, Łobaczuk-Sitnik A, Kraszewska A, Zdrojkowski M, Biszewska J, et al. Psychogenic voice disorders. Otolaryngol Pol. 2018;72(4):26–34.DOI: https://doi.org/10.5604/01.3001.0012.0636
    4. Gray SD, Hammond E, Hanson DF. Benign pathologic responses of the larynx. Ann Otol Rhinol Laryngol [Internet]. 1995 [cited 2020 Sep 11];104(1):13–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/7832537/ DOI: https://doi.org/10.1177/000348949510400103
    5. Fulcher LP, Scherer RC. Phonation threshold pressure: Comparison of calculations and measurements taken with physical models of the vocal fold mucosa. J Acoust Soc Am [Internet]. 2011 Sep [cited 2020 Sep 11];130(3):1597–605. Disponible en: /pmc/articles/PMC3188973/?report=abstract DOI: https://doi.org/10.1121/1.3605672
    6. Kandogan T, Seifert E. Influence of aging and sex on voice parameters in patients with unilateral vocal cord paralysis. Laryngoscope. 2009 Ene 03;115(4): 655–60. DOI: https://doi.org/10.1097/01.mlg.0000161344.23128.9d
    7. Sivasankar M, Fisher K V. Oral breathing increases Pth and vocal effort by superficial drying of vocal fold mucosa. J Voice. 2002 Jun 01;16(2):172–81. DOI: https://doi.org/10.1016/S0892-1997(02)00087-5
    8. Smitheran J, Hixon TJ. A clinical method for estimating laryngeal airway resistance during vowel production. J Speech Hear Disord [Internet]. 1981 [cited 2020 Sep 11];46(2):138–46. Disponible en: https://pubs.asha.org/doi/10.1044/jshd.4602.138 DOI: https://doi.org/10.1044/jshd.4602.138
    9. Titze IR. Phonation threshold pressure: A missing link in glottal aerodynamics. J Acoust Soc Am [Internet]. 1992 May 26 [cited 2020 Sep 11];91(5):2926–35. Disponible en: http://asa.scitation.org/doi/10.1121/1.402928 DOI: https://doi.org/10.1121/1.402928
    10. Titze IR, Švec JG, Popolo PS. Vocal dose measures: Quantifying accumulated vibration exposure in vocal fold tissues. J Speech, Lang Hear Res [Internet]. 2003 Aug [cited 2020 Sep 11];46(4):919–32. Disponible en: /pmc/articles/PMC3158591/?report=abstract DOI: https://doi.org/10.1044/1092-4388(2003/072)
    11. Reghunathan S, Bryson PC. Components of Voice Evaluation. Otolaryngologic Clinics of North America. W.B. Saunders; 2019 Ago;52(4):589–95. DOI: https://doi.org/10.1016/j.otc.2019.03.002
    12. Uloza V, Latoszek BB v., Ulozaite-Staniene N, Petrauskas T, Maryn Y. A comparison of Dysphonia Severity Index and Acoustic Voice Quality Index measures in differentiating normal and dysphonic voices. Eur Arch Oto-Rhino-Laryngology. 2018 Apr 1;275(4):949–58. DOI: https://doi.org/10.1007/s00405-018-4903-x
    13. Lopes LW, Sousa ES da S, da Silva ACF, da Silva IM, de Paiva MAA, Vieira VJD, et al. Cepstral measures in the assessment of severity of voice disorders. CODAS. 2019;31(4).
    14. Zhang Z. Mechanics of human voice production and control. J Acoust Soc Am [Internet]. 2016 Oct [cited 2020 Sep 10];140(4):2614–35. Disponible en: /pmc/articles/PMC5412481/?report=abstract DOI: https://doi.org/10.1121/1.4964509
    15. Guzman M, Calvache Mora CA. Medidas aerodinámicas de la fonación: Bases teóricas y clínicas. Areté [Internet]. 2018;18(2 Sup):1–10. Disponible en: https://arete.ibero.edu.co/article/view/art.182S01 DOI: https://doi.org/10.33881/1657-2513.art.182S01
    16. Chang A, Karnell MP. Perceived phonatory effort and phonation threshold pressure across a prolonged voice loading task: A study of vocal fatigue. J Voice [Internet]. 2004 Dec [cited 2020 Sep 11];18(4):454–66. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15567047/ DOI: https://doi.org/10.1016/j.jvoice.2004.01.004
    17. Enflo L, Sundberg J. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure? Logop Phoniatr Vocology [Internet]. 2009 [cited 2020 Sep 11];34(4):210–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19916893/ DOI: https://doi.org/10.3109/14015430903382789
    18. Titze IR, Schmidt SS, Titze MR. Phonation threshold pressure in a physical model of the vocal fold mucosa. J Acoust Soc Am [Internet]. 1995 [cited 2020 Sep 11];97(5):3080–4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/7759648/ DOI: https://doi.org/10.1121/1.411870
    19. Pearl Solomon N, Stemmle DiMattia M. Effects of a vocally fatiguing task and systemic hydration on phonation threshold pressure. J Voice. 2000 Sep 1;14(3):341–62. DOI: https://doi.org/10.1016/S0892-1997(00)80080-6
    20. Gray SD, Alipour F, Titze IR, Hammond TH. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol. 2000;109(1):77–85. DOI: https://doi.org/10.1177/000348940010900115
    21. Titze IR. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am [Internet]. 1988 [cited 2020 Sep 11];83(4):1536–52. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3372869/ DOI: https://doi.org/10.1121/1.395910
    22. Verdolini-Marston K, Titze IR, Druker DG. Changes in phonation threshold pressure with induced conditions of hydration. J Voice. 1990 Jan 1;4(2):142–51. DOI: https://doi.org/10.1016/S0892-1997(05)80139-0
    23. Roy N, Tanner K, Gray SD, Blomgren M, Fisher K V. An evaluation of the effects of three laryngeal lubricants on phonation threshold pressure (PTP). J Voice. 2003 Sep 1;17(3):331–42. DOI: https://doi.org/10.1067/S0892-1997(03)00078-X
    24. Roy N, Tanner K, Gray SD, Blomgren M, Fisher K V. An evaluation of the effects of three laryngeal lubricants on phonation threshold pressure (PTP). J Voice [Internet]. 2003 [cited 2020 Sep 11];17(3):331–42. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14513956/ DOI: https://doi.org/10.1067/S0892-1997(03)00078-X
    25. Milbrath RL, Solomon NP. Do vocal warm-up exercises alleviate vocal fatigue? J Speech, Lang Hear Res [Internet]. 2003 Apr [cited 2020 Sep 11];46(2):422–36. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14700383/ DOI: https://doi.org/10.1044/1092-4388(2003/035)
    26. Wuyts FL, De Bodt MS, Molenberghs G, Remacle M, Heylen L, Millet B, et al. The Dysphonia Severity Index: An Objective Measure of Vocal Quality Based on a Multiparameter Approach. J Speech, Lang Hear Res [Internet]. 2000 [cited 2020 Sep 11];43(3):796–809. Disponible en: https://pubmed.ncbi.nlm.nih.gov/10877446/ DOI: https://doi.org/10.1044/jslhr.4303.796
    27. Guzman M, Saldivar P, Pérez R, Muñoz D. Aerodynamic, Electroglottographic, and Acoustic Outcomes after Tube Phonation in Water in Elderly Subjects. Folia Phoniatr Logop. 2018 Oct 1;70(3–4):149–55. DOI: https://doi.org/10.1159/000492326
    28. Behlau M. The 2016 G. Paul Moore Lecture: Lessons in Voice Rehabilitation: Journal of Voice and Clinical Practice. J Voice [Internet]. 2019 Sep 1 [cited 2020 Sep 11];33(5):669–81. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29567050/ DOI: https://doi.org/10.1016/j.jvoice.2018.02.020
    29. Calvache Mora CA. Objetividad de la electroglotografía. Aplicaciones clínicas e investigativas en la voz. Revista de Logopedia, Foniatria y Audiologia.2015 Jul-Sep;35(3):134–42. DOI: https://doi.org/10.1016/j.jvoice.2018.02.020
    30. Guzman M, Calvache C, Romero L, Muñoz D, Olavarria C, Madrid S, et al. Do Different Semi-Occluded Voice Exercises Affect Vocal Fold Adduction Differently in Subjects Diagnosed with Hyperfunctional Dysphonia? Folia Phoniatr Logop. 2015;67(2):68–75. DOI: https://doi.org/10.1159/000437353
    31. Guzman M, Calvache C, Romero L, Muñoz D, Olavarria C, Madrid S, et al. Do Different Semi-Occluded Voice Exercises Affect Vocal Fold Adduction Differently in Subjects Diagnosed with Hyperfunctional Dysphonia? Folia Phoniatr Logop [Internet]. 2015 Dec 1 [cited 2020 Sep 11];67(2):68–75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26394210/ DOI: https://doi.org/10.1159/000437353
    32. Colton RH, Casper JK, Leonard RJ. Understanding voice problem: A physiological perspective for diagnosis and treatment: Fourth edition [Internet]. Wolters Kluwer Health Adis (ESP); 2011 [cited 2020 Sep 11]. Disponible en: https://ucdavis.pure.elsevier.com/en/publications/understanding-voice-problem-a-physiological-perspective-for-diagn
    33. Nemr K, Simões-Zenari M, Cordeiro GF, Tsuji D, Ogawa AI, Ubrig MT, et al. GRBAS and cape-V scales: High reliability and consensus when applied at different times. J Voice [Internet]. 2012 [cited 2020 Sep 11];26(6):812.e17-812.e22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23026732/ DOI: https://doi.org/10.1016/j.jvoice.2012.03.005
    34. Lin FC, Chen SH, Chen SC, Wang C Te, Kuo YC. Correlation Between Acoustic Measurements and Self-Reported Voice Disorders Among Female Teachers. J Voice. 2016 Jul 1;30(4):460–5. DOI: https://doi.org/10.1016/j.jvoice.2015.05.013
    35. Mehta DD, Cheyne HA, Wehner A, Heaton JT, Hillman RE. Accuracy of self-reported estimates of daily voice use in adults with normal and disordered voices. Am J Speech-Language Pathol. 2016 Nov 1;25(4):634–41. DOI: https://doi.org/10.1044/2016_AJSLP-15-0105
    36. Scech M. Voice Handicap Index – efficiency and correlation between physical, functional and emotional aspects and voice disorders. Pomeranian J life Sci. 2016 Jan 1;62(1):9–15.
    37. Lopes LW, de Oliveira Florencio V, Silva POC, da Nóbrega e Ugulino AC, Almeida AA. Vocal Tract Discomfort Scale (VTDS) and Voice Symptom Scale (VoiSS) in the Evaluation of Patients With Voice Disorders. J Voice. 2019 May 1;33(3):381.e23-381.e32. DOI: https://doi.org/10.1016/j.jvoice.2017.11.018
    38. Lopes LW, Cabral GF, Figueiredo De Almeida AA. Vocal tract discomfort symptoms in patients with different voice disorders. J Voice. 2015 May 1;29(3):317–23. DOI: https://doi.org/10.1016/j.jvoice.2014.07.013
    39. Wilson JA, Webb A, Carding PN, Steen IN, Mackenzie K, Deary IJ. The Voice Symptom Scale (VoiSS) and the Vocal Handicap Index (VHI): A comparison of structure and content. Clin Otolaryngol Allied Sci. 2004 Apr;29(2):169–74. DOI: https://doi.org/10.1111/j.0307-7772.2004.00775.x
    40. Martins PC, Couto TE, Gama ACC. Auditory-perceptual evaluation of the degree of vocal deviation: Correlation between the Visual Analogue Scale and Numerical Scale. CODAS. 2015;27(3):279–84. DOI: https://doi.org/10.1590/2317-1782/20152014167
    41. Naunheim MR, Dai JB, Rubinstein BJ, Goldberg L, Weinberg A, Courey MS. A visual analog scale for patient-reported voice outcomes: The VAS voice. Laryngoscope Investig Otolaryngol [Internet]. 2020 Feb [cited 2020 Sep 12];5(1):90–5. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32128435 DOI: https://doi.org/10.1002/lio2.333
    42. Lee YW, Kim GH, Bae IH, Park HJ, Wang SG, Kwon SB. The cut-off analysis using visual analogue scale and cepstral assessments on severity of voice disorder. Logop Phoniatr Vocology. 2018 Oct 2;43(4):175–80. DOI: https://doi.org/10.1080/14015439.2018.1461925
    43. Borel F, Tresallet C, Hamy A, Mathonnet M, Lifante JC, Brunaud L, et al. Self-assessment of voice outcomes after total thyroidectomy using the Voice Handicap Index questionnaire: Results of a prospective multicenter study. Surgery. 2019 Sep 13;167(1):129–36. DOI: https://doi.org/10.1016/j.surg.2019.05.090
    44. Bultynck C, Pas C, Defreyne J, Cosyns M, den Heijer M, T’Sjoen G. Self-perception of voice in transgender persons during cross-sex hormone therapy. Laryngoscope. 2017 Dic 1;127(12):2796–804. DOI: https://doi.org/10.1002/lary.26716
    45. Cohen W, Lloyd S, Wynne DM, Townsley RB. Perceptual evaluation of voice disorder in children who have had laryngotracheal reconstruction surgery and the relationship between clinician perceptual ratingof voice quality and parent proxy/child self-report of voice-related quality of life. J Voice. 2019 Nov 1;33(6):945.e27-945.e35. DOI: https://doi.org/10.1016/j.jvoice.2018.07.009
    46. Phadke KV, Laukkanen AM, Ilomäki I, Kankare E, Geneid A, Švec JG. Cepstral and perceptual investigations in female teachers with functionally healthy voice. J Voice. 2018 Oct 19;34(3):485.e33-485.e43 DOI: https://doi.org/10.1016/j.jvoice.2018.09.010
    47. Delgado-Hernández J, León-Gómez NM, Izquierdo-Arteaga LM, Llanos-Fumero Y. Cepstral analysis of normal and pathological voice in Spanish adults. Smoothed cepstral peak prominence in sustained vowels versus connected speech. Acta Otorrinolaringol Esp. 2018 May 1;69(3):134–40. DOI: https://doi.org/10.1016/j.otoeng.2017.05.002
    48. Rieves AL, Regner MF, Jiang JJ. Phonation threshold pressure estimation using electroglottography in an airflow redirection system. Laryngoscope. 2009 Dic;119(12):2378–83. DOI: https://doi.org/10.1002/lary.20611
    49. Björklund S, Sundberg J. Relationship between subglottal pressure and sound pressure level in untrained voices. Journal of Voice. 2016 Ene 01;30(1):15–20. DOI: https://doi.org/10.1016/j.jvoice.2015.03.006
    50. Barone NA, Ludlow CL, Tellis CM. Acoustic and aerodynamic comparisons of voice qualities produced after voice training. J Voice [Internet]. 2019 Sep 3 [cited 2020 Sep 12]; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/31492513DOI: https://doi.org/10.1016/j.jvoice.2019.07.011
    51. Titze IR. Phonation threshold pressure measurement with a semi-occluded vocal tract. J Speech, Lang Hear Res. 2009 Aug 1;52(4):1062–72. DOI: https://doi.org/10.1044/1092-4388(2009/08-0110)
    52. Jiang J, O’Mara T, Conley D, Hanson D. Phonation threshold pressure measurements during phonation by airflow interruption. Laryngoscope. 1999;109(3):425–32. DOI: https://doi.org/10.1097/00005537-199903000-00016
    53. Plexico LW, Sandage MJ, Faver KY. Assessment of phonation threshold pressure: a critical review and clinical implications. Am J speech-language Pathol [Internet]. 2011 Nov [cited 2020 Sep 12];20(4):348–66. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21856967 DOI: https://doi.org/10.1044/1058-0360(2011/10-0066)
    54. Sundberg J, Scherer R, Hess M, Müller F, Granqvist S. Subglottal pressure oscillations accompanying phonation. J Voice. 2013 Jul;27(4):411–21. DOI: https://doi.org/10.1016/j.jvoice.2013.03.006
    55. Mora R, Jankowska B, Guastini L, Santomauro V, Dellepiane M, Crippa B, et al. Computerized voice therapy in hypofunctional dysphonia. J Otolaryngol - Head Neck Surg. 2010 Oct;39(5):615–21
    56. Kosztyła-Hojna B, Moskal D, Kuryliszyn-Moskal A. Parameters of the assessment of voice quality and clinical manifestation of rheumatoid arthritis. Adv Med Sci. 2015 Sep 26;60(2):321–8. DOI: https://doi.org/10.1016/j.advms.2015.06.004
    57. Szklanny K, Gubrynowicz R, Ratyńska J, Chojnacka-Wądołowska D. Electroglottographic and acoustic analysis of voice in children with vocal nodules. Int J Pediatr Otorhinolaryngol. 2019 Jul 1;122:82–8. DOI: https://doi.org/10.1016/j.ijporl.2019.03.030
    58. Calvache C, Guzman M, Bobadilla M, Bortnem C. Variation on vocal economy after different semioccluded vocal tract exercises in subjects with normal voice and dysphonia. J Voice. 2020 Jul 1;34(4):582–9.DOI: https://doi.org/10.1016/j.jvoice.2019.01.007
    59. Guzman M, Calvache C, Romero L, Muñoz D, Olavarria C, Madrid S, et al. Do different semi-occluded voice exercises affect vocal fold adduction differently in subjects diagnosed with hyperfunctional dysphonia? Folia Phoniatr Logop. 2015 Dec 1;67(2):68–75. DOI: https://doi.org/10.1159/000437353
    60. Vieira MN, McInnes FR, Jack MA. On the influence of laryngeal pathologies on acoustic and electroglottographic jitter measures. J Acoust Soc Am. 2002 Feb;111(2):1045–55. DOI: https://doi.org/10.1121/1.1430686
    61. Mendoza E, Valencia N, Muñoz J, Trujillo H. Differences in voice quality between men and women: Use of the long-term average spectrum (LTAS). J Voice. 1996;10(1):59–66. DOI: https://doi.org/10.1016/S0892-1997(96)80019-1
    62. Izdebski K. Overpressure and breathiness in spastic dysphonia: An acoustic (LTAS) and perceptual study. Acta Otolaryngol. 1984;97(3–4):373–8. DOI: https://doi.org/10.3109/00016488409131003
    63. Thuesen MA, McGlashan J, Sadolin C. Curbing—the metallic mode in-between: an empirical study qualifying and categorizing restrained sounds known as curbing based on audio perception, laryngostroboscopic imaging, acoustics, LTAS, and EGG. J Voice. 2017 Sep 1;31(5):644.e1-644.e10. DOI: https://doi.org/10.1016/j.jvoice.2017.01.010
    64. McGlashan J, Thuesen MA, Sadolin C. Overdrive and edge as refiners of “belting”?: an empirical study qualifying and categorizing “belting” based on Audio Perception, Laryngostroboscopic Imaging, Acoustics, LTAS, and EGG. J Voice. 2017 May 1;31(3):385.e11-385.e22. DOI: https://doi.org/10.1016/j.jvoice.2016.09.006
    65. Szkiełkowska A, Krasnodębska P, Miaśkiewicz B, Skarżyński H. Electroglottography in the diagnosis of functional dysphonia. Eur Arch Oto-Rhino-Laryngology. 2018 Oct 1;275(10):2523–8. DOI: https://doi.org/10.1007/s00405-018-5012-6
    Sistema OJS 3.4.0.7 - Metabiblioteca |