Neurocognitive mechanisms of motivation in physical training
Mecanismos Neurocognitivos de la motivación en el entrenamiento físico
Abstract
Physical inactivity and sedentary lifestyle are currently a global health problem that concerns because of its systematic growth, the health consequences it causes for adults and, in alarming escalation, also for the younger population. On the contrary, regular physical activity has shown benefits to physical, neurological and mental health. Despite the incontrovertible information about its positive effects, less than half of the world’s population excercises regularly. This work’s objective is to make a brief description of the neurocognitive mechanisms that are involved in the motivational processes, especially those linked to physical activity, in order to present pragmatic recommendations that increase adherence to physical training programs, based on techniques of cognitive psychology and analyzed from a neurocognitive perspective.
Downloads
Authors
References
Organización Mundial de la Salud [Internet]. 2002 Ago 09. Estrategia mundial sobre régimen alimentario, actividad física y salud: actividad física; fecha de publicación desconocida [citado 2020 Jun 13]. 1 pantalla. Disponible en: https://www.who.int/dietphysicalactivity/pa/es/
Yong Tan S, Yip A. António Egas Moniz (1874–1955): Lobotomy pioneer and Nobel laureate. Singapore Med J [Internet]. 2014;55(4):175–176. DOI: https://dx.doi.org/10.11622%2Fsmedj.2014048
Le Heron C, Apps MAJ, Husain M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia [Internet]. 2018 Sep;118(B):54-67. DOI: https://doi.org/10.1016/j.neuropsychologia.2017.07.003
Sung-il K. Neuroscientific model of motivational process. Front Psychol [Internet]. 2013 Mar 04; 4(98) DOI: https://dx.doi.org/10.3389%2Ffpsyg.2013.00098
Hughes BL, Zaki J. The neuroscience of motivated cognition. Science & Society [Internet]. 2015 Feb 01;19(2): 62-64. DOI: https://doi.org/10.1016/j.tics.2014.12.006
Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry [Internet]. 2004 Nov-Dic;12(6):305–320. DOI: https://dx.doi.org/10.1080%2F10673220490910844
Da Silva Santos R, Galdino G. Endogenous systems involved in exercise-induced analgesia. J Physiol Pharmacol [Internet]. 2018;69(1):3-13. DOI: https://doi.org/10.26402/jpp.2018.1.01
Naqvi N, Shiv B, Bechara A. The role of emotion in decision making: a cognitive neuroscience perspective. Current Directions in Psychological Science [Internet]. 2016 Oct 1;15(5):260-264. DOI: https://doi.org/10.1111/j.1467-8721.2006.00448.x
Damasio AR. Descartes' error: emotion, reason and the human brain. New York: Putnam and Sons. 1994.
Poppa T, Bechara A. The somatic marker hypothesis: revisiting the role of the ‘body-loop’ in decision-making. Current Opinion in Behavioral Sciences [Internet]. 2018 Feb; 19:61-66. DOI: https://doi.org/10.1016/j.cobeha.2017.10.007
Davidson R. Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition [Internet]. 1992 Sep; 20(1): 125-151. DOI: https://doi.org/10.1016/0278-2626(92)90065-T.
Chang MO, Peralta AO, Corcho OJP. Training with cognitive behavioral techniques for the control of precompetitive anxiety. IJHMS [Internet]. 2020 Feb 4;3(1), 29-34. Disponible en: https://sloap.org/journal/index.php/ijhms/article/view/121
Moran, A. P. The psychology of concentration in sport performers: a cognitive analysis. Exeter: Psychology Press. 2016.
Holtgraves T, Felton A. Hemispheric asymmetry in the processing of negative and positive words: a divided field study. Cognition & Emotion [Internet]. 2011 May 4;25(4):691-699. DOI: https://doi.org/10.1080/02699931.2010.493758
Duda P, Brown J. Lateral Asymmetry of Positive and Negative Emotions. Cortex [Internet]. 1984 Jun;20(2):253-261. DOI: https://doi.org/10.1016/S0010-9452(84)80042-8
Costigan SA, Lubans, DR, Lonsdale C, Sanders T, del Pozo Cruz B. Associations between physical activity intensity and well-being in adolescents. Preventive Medicine [Internet]. 2019 Ago;125 (0):55-61. DOI:https://doi.org/10.1016/j.ypmed.2019.05.009
Gutin B, Owens S. The influence of physical activity on cardiometabolic biomarkers in youths: a review. Pediatric Exercise Science [Internet]. 2001;23(2):169-185. DOI: https://doi.org/10.1123/pes.23.2.169
Da Silva Santos, R., & Galdino, G. Endogenous systems involved in exercise-induced analgesia. Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society [Internet]; 2018 Feb; 69(1): 3-13. DOI: https://doi.org/10.26402/jpp.2018.1.01
Duarte ID, Lorenzetti BB, Ferreira Sh. Peripheral analgesia and activation of the nitric oxide cyclic GMP pathway. Eur J Pharmacol [Internet]. 1990 Sep 21;186(2-3):289-293. DOI: https://doi.org/10.1016/0014-2999(90)90446-D
Jonsdottir Ih, Jungersten L, Johansson C, Wennmalm A, Thorean P, Hoffmann P. Increase in nitric oxide formation after chronic voluntary exercise in spontaneously hypertensive rats. Acta Physiol Scand [Internet]. 1998 Feb;162(2):149-153. DOI: https://doi.org/10.1046/j.1365-201X.1998.0285f.x
Murad F. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med [Internet]. 2006 Nov 9; 355(0): 2003-2011. DOI: https://doi.org/10.1056/NEJMsa063904
Galdino G, Romero T, Silva JF, et al. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg [Internet]. 2014 Sep;119(3): 702-715. DOI: https://doi.org/10.1213/ANE.0000000000000340
Watkins, B. A. Endocannabinoids, exercise, pain, and a path to health with aging. Molecular Aspects of Medicine [Internet]; 2018 Dic;64(0):68-78. DOI: https://doi.org/10.1016/j.mam.2018.10.001
Galdino G, Romero TR, Silva jF, et al. The endocannabinoid system mediates aerobic exercise induced antinociception in rats. Neuropharmacology [Internet]. 2014 Feb; 77(0): 313-324. DOI: https://doi.org/10.1016/j.neuropharm.2013.09.022
Millan Mj. Descending control of pain. Prog Neurobiol. 2002 Abr;66(6): 355-474. DOI:
Rivot J.P., Pointis D., Besson J.M. A comparison of the effects of morphine on 5-HT metabolism in the periaqueductal gray, ventromedial medulla and medullary dorsal horn: in vivo electrochemical studies in freely moving rats. Brain Research, 1989. 495 (1), pp. 140-144.27.
Brown BS, Payne T, Kim C, Moore G, Krebs P, Martin W. Chronic response of rat brain norepinephrine and serotonin levels to endurance training. J Appl Physiol Respir Environ Exerc Physiol [Internet]. 1979 Ene 1;46(1):19-23. DOI: https://doi.org/10.1152/jappl.1979.46.1.19
Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A. Aerobic exercise upregulates the BDNF-serotonin systems and improves the cognitive function in rats. Neurobiology of learning and Memory [Internet]; 2018 Nov;155(0):528-542. DOI: https://doi.org/10.1016/j.nlm.2018.05.007
Korb A, Bonetti LV, da Silva SA, et al. Effect of treadmill exercise on serotonin immunoreactivity in medullary raphe nuclei and spinal cord following sciatic nerve transection in rats. Neurochem Res [Internet]. 2009 Sep 23;35(0):380-389 DOI: https://doi.org/10.1007/s11064-009-0066-x
Fischer A G, Ullsperger M. An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci [Internet]. 2017 Oct 11;11(484). DOI: https://dx.doi.org/10.3389%2Ffnhum.2017.00484
Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A., Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology [Internet]. 2010 Ene 27;35(0):1290–1301. DOI: https://doi.org/10.1038/npp.2009.233
Bromberg-Martin ES, Hikosaka O, Nakamura K. Coding of task reward value in the dorsal raphe nucleus. J Neurosci [Internet]. 2010 May 5;30(18):6262–6272. DOI: https://doi.org/10.1523/JNEUROSCI.0015-10.2010
Yaksh TL. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 1985 May;22(5):845-858. DOI: https://doi.org/10.1016/0091-3057(85)90537-4
MacDonald E, Kobilka BK, Scheinin M. Gene targetinghoming in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci [Internet]. 1997 Jun 1;18(6):211-219. DOI: https://doi.org/10.1016/S0165-6147(97)01063-8
Nicholas AP, hokfelt T, Pieribone VA. The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci [Internet]. 1996 Jul;17(7):245-255. DOI: https://doi.org/10.1016/0165-6147(96)10022-5
De Souza GG, Duarte ID, De Castro Perez A. Differential involvement of central and peripheral a2 adrenoreceptors in the antinociception induced by aerobic and resistance exercise. Anesth Analg [Internet]. 2013 Mar;116(3):703-711. DOI: https://doi.org/10.1213/ANE.0b013e31827ab6e4
Hope D.A, Burns J.A, Hyes S.A, Herbert J.D, Warner M.D. Automatic thoughts and cognitive restructuring in cognitive behavioral group therapy for social anxiety disorder. Cognitive Therapy Research [Internet]. 2007 Jun 2;34(0):1–12. DOI: https://doi.org/10.1007/s10608-007-9147-9
Chalah MA, Ayache SS. Disentangling the neural basis of cognitive behavioral therapy in psychiatric disorders: a focus on depression. Brain Sci [Internet]. 2018 Ago 9;8(8):150.
Cervelló E. La motivación y el abandono deportivo desde la perspectiva de las metas de logro. [tesis doctoral]. [Valencia]: Universidad de Valencia; 1996.
Boiche J, Sarrazin P. Proximal and distal factors associated with dropout versus maintained participation in organized sport. J Sports Sci Med [Internet]. 2009 Mar 1;8(1):9-16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737782/
Johnson C. Sports as a mechanism for reaching your potential: the relationship between positive psychology and sports. Sports science and human health-different approaches [Internet]. 2020 Feb 25. IntechOpen:1-18. DOI: https://doi.org/10.5772/intechopen.91417
Ng TWH, Sorensen KL, Eby LT. Locus of control at work: a meta-analysis. Journal of Organizational Behavior [Internet]; 2006 Sep 22;27(8):1057-1087. DOI: https://doi.org/10.1002/job.416
Rotter J. Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied [Internet]. 1896-1966;80(1):1-28. DOI: https://doi.org/10.1037/h0092976
Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala–frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci [Internet]. 2007 Jul 21;2(4):303–312. DOI: https://dx.doi.org/10.1093%2Fscan%2Fnsm029
Shimamura AP. Toward a cognitive neuroscience of metacognition. Consciousness and Cognition [Internet]. 2000 Jun;9(2):313–323. DOI: https://doi.org/10.1006/ccog.2000.0450
Davidson, R J. Emotion and affective style: hemispheric substrate. Psychological Science [Internet]. 1992 Ene 1;3(1): 39-43. DOI: https://doi.org/10.1111/j.1467-9280.1992.tb00254.x
Organización Mundial de la Salud [Internet]. 2002 Ago 09. Estrategia mundial sobre régimen alimentario, actividad física y salud: inactividad física: un problema de salud pública mundial; fecha de publicación desconocida [citado 2020 Jun 13]. 1 pantalla. Disponible en: https://www.who.int/dietphysicalactivity/factsheet_inactivity/es/
Sharma A, Madaan V, Petty FD. Exercise for mental health. Prim Care Companion J Clin Psychiatry [Internet]. 2006;8(2):106. DOI: https://dx.doi.org/10.4088%2Fpcc.v08n0208a
Richardson CR, Faulkner G, and McDevitt J. Integrating physical activity into mental health services for persons with serious mental illness. Psychiatr Serv [Internet]. 2005 Mar 1;56(3):324–31. DOI: https://doi.org/10.1176/appi.ps.56.3.324
Callaghan P. Exercise: a neglected intervention in mental health care? J Psychiatr Ment Health Nurs [Internet]. 2004 Jul 14;11(4):476–83. DOI: https://doi.org/10.1111/j.1365-2850.2004.00751.x
Guszkowska M. Effects of exercise on anxiety, depression and mood. Psychiatr Pol [Internet]. 2004 Jul-Ago;38(4):611–20. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15518309/
Peluso MA, Andrade LH. Physical activity and mental health: the association between exercise and mood. Clinics [Internet]. 2005 Ene-Feb;60(1):61–70. DOI: https://doi.org/10.1590/S1807-59322005000100012
Fogarty M, Happell B, Pinikahana J. The benefits of an exercise program for people with schizophrenia: a pilot study. Psychiatr Rehabil J [Internet]. 2004;28(2):173–6. DOI: https://doi.org/10.2975/28.2004.173.176
Luliano E, di Cagno A, Cristofano A, Angiolillo A, D´Aversa R, Ciccotelli S et al. Physical exercise for prevention of dementia (EPD) study: background, design and methods. BMC Public Health [Internet]. 2019 May 29;19(659) DOI: https://doi.org/10.1186/s12889-019-7027-3
Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement Geriatr Cogn Dis [Internet]. 2014;38:347–365. DOI: https://doi.org/10.1159/000365388
Yau SY, Gil-Mohapel J, Christie BR, So KF. Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? Biomed Res Int [Internet]. 2014 Abr 9;2014(403120). DOI: https://doi.org/10.1155/2014/403120
Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res [Internet]. 2017 Ene 15;317(0):332–339. DOI: https://doi.org/10.1016/j.bbr.2016.09.067
Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev [Internet]. 2013 Nov;37(9B):2243–2257. DOI: https://doi.org/10.1016/j.neubiorev.2013.04.005
Sandoval-Obando, E.; Sierra, E. y Zacarés, J. Envejecer generativamente: una propuesta desde el modelo del buen vivir. Neurama. Revista Electrónica de Psicogerontología [Internet]. 2019;6(2): 16-26. Disponible en: http://eduardosandoval.cl/2020/01/13/publicacion-del-articulo-envejecer-generativamente-una-propuesta-desde-el-modelo-del-buen-vivir/
Sharma, A. Madaan, V. Petty, F D. Exercise for Mental Health. [Internet]. 2006;8(2):106. DOI: https://doi.org/10.4088/PCC.v08n0208a
Stillman CM, Cohen J, Lehman ME, Erickson KI. Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front Hum Neurosci [Internet].2016 Dic 8;10:626. DOI: https://doi.org/10.3389/fnhum.2016.00626
Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci [Internet]. 2014;26:138–146. DOI: https://doi.org/10.1123/pes.2013-0125
Lytle M, Bilt J, Pandav R, Dodge H, Ganguli M. Exercise level and cognitive decline. Alzheimer Dis Assoc Disord [Internet]. 2004;18:57–64. DOI: https://doi.org/10.1097/01.wad.0000126614.87955.79
Raji CA, Merrill DA, Eyre H, Mallam S, Torosyan N, Erickson KI et al. Longitudinal relationships between caloric expenditure and gray matter in the cardiovascular health study. J Alzheimer’s Dis [Internet]. 2016; 52:719–29. DOI: https://doi.org/10.3233/JAD-160057
Diamond A, Ling DS. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev Cogn Neurosci [Internet]. 2016;18:34–48. DOI: https://doi.org/10.1016/j.dcn.2015.11.005