Skip to main navigation menu Skip to main content Skip to site footer

Training intensity distribution on running time in amateur endurance runners: a scoping review

Distribución de intensidades de entrenamiento sobre el tiempo de carrera en corredores recreativos de resistencia: revisión de alcance



Open | Download


Section
Review Articles

How to Cite
1.
Training intensity distribution on running time in amateur endurance runners: a scoping review. Rev. Investig. Innov. Cienc. Salud [Internet]. 2022 Dec. 10 [cited 2024 Nov. 28];4(2):137-49. Available from: https://riics.info/index.php/RCMC/article/view/136

Dimensions
PlumX
Jerman Jesyd Cruz-González
    Víctor Hugo Arboleda-Serna

      Problem: Intensity in endurance training is important for improving race time; its optimal handling in amateur runners has not been extensively studied. The polarized training intensity distribution (TID) model emerges as a possibility to reduce race time; however, effect of this model remains to be demonstrated compared to other TID models.

      Objective: The objective of this study is to explore the current state of the evidence and its the gaps, according to the effect of the polarized TID model on race time in amateur runners compared to other TID models.

      Method: A scoping review without date restrictions was carried out in PubMed, EBSCO, SciELO, LILACS, and Google Scholar. Randomized controlled studies, quasi-experimental studies, and case studies, which comprise polarized TID model in amateur runners on race time, were include.

      Results: Five studies evaluated the effect on running time using the polarized TID model compared to other models in amateur runners; four of them did not show differences between groups in the race times in two, five, and ten km. Only one study showed significant differences in the race time at 21 km.

      Conclusions: The model with polarized TID did not show significant differences in race time compared to other models, except for a case report in which the polarized TID was higher by 21 km compared to the threshold TID: 1 hour. 20 min. 22 seconds and 1 hour. 26 min. 34s, respectively. The scarce evidence found, the heterogeneity in the distances in the evaluated race time, the distribution of zones in the same TID, the duration of the interventions, and the monitoring of the loads, are the main limitations found in the studies. The polarized TID could contribute to adherence, lower perception of effort, and injury prevention. However, this must be tested in future studies.


      Article visits 1491 | PDF visits 457


      1. Kinderman W, Simon G, Keul J. Developmental changes in carbohydrate moiety of human alpha‐fetoprotein. Int J Cancer. 1978;22(5):515-20. doi: https://doi.org/10.1002/ijc.2910220502
      2. Skinner JS, McLellan TH. The Transition from Aerobic to Anaerobic Metabolism. Res Q Exerc Sport. 1980;51(1):234-48. doi: https://doi.org/10.1080/02701367.1980.10609285
      3. Hydren J, Bruce C. Current scientific evidence for a polarized cardiovascular endurance training model. J strength Cond Res [Internet]. 2015;29(12). doi: https://doi.org/10.1519/JSC.0000000000001197
      4. Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform [Internet]. 2010;5(3):276-91. doi: https://doi.org/10.1123/ijspp.5.3.276
      5. Campos Y, Casado A, Vieira JG, Guimarães M, Sant'Ana L, Leitão L, et al. Training-intensity Distribution on Middle- And Long-distance Runners: A Systematic Review. Int J Sports Med [Internet]. 2021. doi: https://doi.org/10.1055/a-1559-3623
      6. Filipas L, Bonato M, Gallo G, Codella R. Effects of 16 weeks of pyramidal and polarized training intensity distributions in well-trained endurance runners. Scand J Med Sci Sport [Internet]. 2022;32(3):498-511. doi: https://doi.org/10.1111/sms.14101
      7. Festa L, Tarperi C, Skroce K, La Torre A, Schena F. Effects of Different Training Intensity Distribution in Recreational Runners. Front Sport Act Living [Internet]. 2020;1(January):1-7. doi: https://doi.org/10.3389/fspor.2019.00070
      8. Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol [Internet]. 2015;6(OCT):295. doi: https://doi.org/10.3389/fphys.2015.00295
      9. Muñoz I, Seiler S, Bautista J, España J, Larumbe E, Esteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform [Internet]. 2014;9(2):265-72. doi: https://doi.org/10.1123/ijspp.2012-0350
      10. Röhrken G, Held S, Donath L. Six Weeks of Polarized Versus Moderate Intensity Distribution: A Pilot Intervention Study. Front Physiol [Internet]. 2020;11(November):1-11. doi: https://doi.org/10.3389/fphys.2020.534688
      11. Treff G, Winkert K, Sareban M, Steinacker JM, Sperlich B. The polarization-index: A simple calculation to distinguish polarized from non-polarized training intensity distributions. Front Physiol [Internet]. 2019;10(JUN):1-6. doi: https://doi.org/10.3389/fphys.2019.00707
      12. Kenneally M, Casado A, Gomez-Ezeiza J, Santos-Concejero J. Training intensity distribution analysis by race pace vs. physiological approach in world-class middle- and long-distance runners. Eur J Sport Sci [Internet]. 2021;21(6):819-26. doi: https://doi.org/10.1080/17461391.2020.1773934
      13. Kenneally M, Casado A, Santos-Concejero J. The Effect of Periodization and Training Intensity Distribution on Middle- and Long-Distance Running Performance: A Systematic Review. International Journal of Sports Physiology and Performance [Internet]. 2018 Oct 1;13(9):1114–21. doi: http://dx.doi.org/10.1123/ijspp.2017-0327
      14. Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol [Internet]. 2014;5 FEB(February):1-9. doi: https://doi.org/10.3389/fphys.2014.00033
      15. Carnes AJ, Mahoney SE. Polarized vs. High Intensity Multimodal Training in Recreational Runners. Int J Sport Physiol Perform J Int J Sport Physiol Perform [Internet]. 2018;1-28. doi: https://doi.org/10.1123/ijspp.2018-0040
      16. Zinner C, Schäfer Olstad D, Sperlich B. Mesocycles with different training intensity distribution in recreational runners. Med Sci Sports Exerc [Internet]. 2018;50(8):1641-8. doi: https://doi.org/10.1249/MSS.0000000000001599
      17. Auersperger I, Jurov I, Laurencak K, Leskosek B, Skof B. The effect of a short-term training period on physiological parameters and running performance in recreationally active female runners. Sport Mont [Internet]. 2020;18(1):69-74. doi: https://doi.org/10.26773/smj.200212
      18. Muñoz I, Varela-Sanz A. Training intensity distribution and performance of a recreational male endurance runner. A case report. J Phys Educ Sport. 2018;18(4):2257-63. Available from: https://efsupit.ro/images/stories/decembrie2018/Art%20340.pdf
      19. Pérez A, Ramos-Campo DJ, Freitas TT, Rubio-Arias J, Marín-Cascales E, Alcaraz PE. Effect of two different intensity distribution training programmes on aerobic and body composition variables in ultra-endurance runners. Eur J Sport Sci [Internet]. 2019;19(5):636-44. doi: https://doi.org/10.1080/17461391.2018.1539124
      20. Sellés Pérez S, Fernández-Sáez J, Cejuela R. Polarized and pyramidal training intensity distribution: Relationship with a half-ironman distance triathlon competition. J Sport Sci Med. 2019;18(4):708-15. Available from: https://www.jssm.org/jssm-18-708.xml%3EFulltext
      21. Neal CM, Hunter AM, Brennan L, O'Sullivan A, Hamilton DL, DeVito G, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol [Internet]. 2013;114(4):461-71. doi: https://doi.org/10.1152/japplphysiol.00652.2012
      22. Yu H, Chen X, Zhu W, Cao C. A quasi-experimental study of Chinese top-level speed skaters' training load: Threshold versus polarized model. Int J Sports Physiol Perform [Internet]. 2012;7(2):103-12. doi: https://doi.org/10.1123/ijspp.7.2.103
      23. Pla R, Le Meur Y, Aubry A, Toussaint JF, Hellard P. Effects of a 6-week period of polarized or threshold training on performance and fatigue in elite swimmers. Int J Sports Physiol Perform [Internet]. 2019;14(2):183-9. doi: https://doi.org/10.1123/ijspp.2018-0179
      24. Foster C, Rodriguez-Marroyo JA, De Koning JJ. Monitoring training loads: The past, the present, and the future. Int J Sports Physiol Perform [Internet]. 2017;12:2-8. doi: https://doi.org/10.1123/IJSPP.2016-0388
      25. Casado A, González-Mohíno F, González-Ravé JM, Foster C. Training Periodization, Methods, Intensity Distribution, and Volume in Highly Trained and Elite Distance Runners: A Systematic Review. Int J Sports Physiol Perform [Internet]. 2022;17(6):820-33. doi: https://doi.org/10.1123/ijspp.2021-0435
      26. Andersen JJ. The State of Running 2019 | RunRepeat [Internet]. 2019 [cited 2022 Sep 1]. Available from: https://runrepeat.com/state-of-running
      27. Boullosa D, Esteve-Lanao J, Casado A, Peyré-Tartaruga LA, Gomes da Rosa R, Del Coso J. Factors Affecting Training and Physical Performance in Recreational Endurance Runners. Sports [Internet]. 2020;8(3):35. doi: https://doi.org/10.3390/sports8030035
      28. Haugen T, Sandbakk Ø, Seiler S, Tønnessen E. The Training Characteristics of World-Class Distance Runners: An Integration of Scientific Literature and Results-Proven Practice. Sport Med - Open [Internet]. 2022;8(1). doi: https://doi.org/10.1186/s40798-022-00438-7
      29. Bourgois JG, Bourgois G, Boone J. Perspectives and determinants for training-intensity distribution in elite endurance athletes. Int J Sports Physiol Perform [Internet]. 2019;14(8):1151-6. doi: https://doi.org/10.1123/ijspp.2018-0722
      30. Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an "optimal" distribution? Scand J Med Sci Sport [Internet]. 2006;16(1):49-56. doi: https://doi.org/10.1111/j.1600-0838.2004.00418.x
      31. Muñoz I, Cejuela R, Seiler S, Larumbe E, Esteve-Lanao J. Training-intensity distribution during an ironman season: Relationship with competition performance. Int J Sports Physiol Perform [Internet]. 2014;9(2):332-9. doi: https://doi.org/10.1123/ijspp.2012-0352
      32. Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol Theory Pract [Internet]. 2005;8(1):19-32. doi: https://doi.org/10.1080/1364557032000119616
      33. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med [Internet]. 2018;169(7):467-73. doi: https://doi.org/10.7326/M18-0850
      34. Alvero-Cruz JR, Carnero EA, García MAG, Cárceles FA, Correas-Gómez L, Rosemann T, et al. Predictive performance models in long-distance runners: A narrative review. Int J Environ Res Public Health [Internet]. 2020;17(21):1-22. doi: https://doi.org/10.3390/ijerph17218289
      35. World Athletics. Reglamento de competición y técnico World Athletics 2022. 1-284. Avalilable from: https://www.rfea.es/jueces/publicaciones/Reglamento_Competicion2022_WorldAthleticsESP.pdf
      36. Borresen J, Lambert MI. The Quantification of Training Load, Effect on Performance. Sport Med [Internet]. 2009;39(9):779-95. doi: https://doi.org/10.2165/11317780-000000000-00000
      Sistema OJS 3.4.0.7 - Metabiblioteca |