Auditory-vocal integration impairment: New challenges and opportunities for voice assessment and therapy
Alteración de la integración auditivo-vocal: nuevos retos y oportunidades para la evaluación y la terapia de la voz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Show authors biography
This reflection paper addresses the importance of the interaction between voice perception and voice production, emphasizing the processes of auditory-vocal integration that are not yet widely reported in the context of voice clinicians. Given the above, this article seeks to 1) highlight the important link between voice production and voice perception and 2) consider whether this relationship might be exploited clinically for diagnostic purposes and therapeutic benefit. Existing theories on speech production and its interaction with auditory perception provide context for discussing why the evaluation of auditory-vocal processes could help identify associated origins of dysphonia and inform the clinician around appropriate management strategies. Incorporating auditory-vocal integration assessment through sensorimotor adaptation paradigm testing could prove to be an important addition to voice assessment protocols at the clinical level. Further, if future studies can specify the means to manipulate and enhance a person’s auditory-vocal integration, the efficiency of voice therapy could be increased, leading to improved quality of life for people with voice disorders.
Article visits 731 | PDF visits 408
- Liberman AM, Mattingly IG. The motor theory of speech perception revised. Cognition [Internet]. 1985 Oct;21(1):1–36. doi: https://doi.org/10.1016/0010-0277(85)90021-6
- Fowler CA. Speech Perception as a Perceptuo-Motor Skill. In: Hickok G, Small S, editors. Neurobiology of Language [Internet]. Elsevier; 2016. p. 175–84. doi: https://doi.org/10.1016/B978-0-12-407794-2.00015-8
- Lotto AJ, Holt LL. Speech Perception. In: Hickok G, Small S, editors. Neurobiology of Language [Internet]. Elsevier; 2016 [cited 2021 Mar 9]. p. 185–94. doi: https://doi.org/10.1016/B978-0-12-407794-2.00016-X
- Kuang J, Liberman M. Integrating Voice Quality Cues in the Pitch Perception of Speech and Non-speech Utterances. Front Psychol [Internet]. 2018 Nov 29;9. doi: https://doi.org/10.3389/fpsyg.2018.02147
- Zhang Z. Mechanics of human voice production and control. J Acoust Soc Am [Internet]. 2016 Oct;140(4):2614–35. doi: https://doi.org/10.1121/1.4964509
- Liberman AM, Delattre P, Cooper FS. The Role of Selected Stimulus-Variables in the Perception of the Unvoiced Stop Consonants. Am J Psychol [Internet]. 1952 Oct;65(4):497. doi: https://doi.org/10.2307/1418032
- Liberman AM, Delattre PC, Gerstman LJ, Cooper FS. Tempo of frequency change as a cue for distinguishing classes of speech sounds. J Exp Psychol [Internet]. 1956;52(2):127–37. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0041240
- Liberman AM, Harris KS, Hoffman HS, Griffith BC. The discrimination of speech sounds within and across phoneme boundaries. J Exp Psychol [Internet]. 1957;54(5):358–68. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0044417
- Hillenbrand JM, Houde RA. Role of Fo and Amplitude in the Perception of Intervocalic Glottal Stops. J Speech, Lang Hear Res [Internet]. 1996 Dec;39(6):1182–90. doi: https://doi.org/10.1044/jshr.3906.1182
- Hillenbrand J, Getty LA, Clark MJ, Wheeler K. Acoustic characteristics of American English vowels. J Acoust Soc Am [Internet]. 1995 May;97(5):3099–111. doi: https://doi.org/10.1121/1.411872
- Morrison GS, Assmann PF. Vowel Inherent Spectral Change [Internet]. Morrison GS, Assmann PF, editors. Vowel Inherent Spectral Change. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 1–286. Available from: http://link.springer.com/10.1007/978-3-642-14209-3
- Patel S, Nishimura C, Lodhavia A, Korzyukov O, Parkinson A, Robin DA, et al. Understanding the mechanisms underlying voluntary responses to pitch-shifted auditory feedback. J Acoust Soc Am [Internet]. 2014 May;135(5):3036–44. doi: https://doi.org/10.1121/1.4870490
- Parkinson AL, Flagmeier SG, Manes JL, Larson CR, Rogers B, Robin DA. Understanding the neural mechanisms involved in sensory control of voice production. Neuroimage [Internet]. 2012 May;61(1):314–22. doi: https://doi.org/10.1016/j.neuroimage.2012.02.068
- Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, et al. Recommended protocols for instrumental assessment of voice: American speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech-Language Pathol [Internet]. 2018 Aug 1 [cited 2021 Mar 9];27(3):887–905. doi: https://doi.org/10.1044/2018_AJSLP-17-0009
- Whittico TH, Ortiz AJ, Marks KL, Toles LE, Van Stan JH, Hillman RE, et al. Ambulatory monitoring of Lombard-related vocal characteristics in vocally healthy female speakers. J Acoust Soc Am [Internet]. 2020 Jun;147(6):EL552–8. doi: https://doi.org/10.1121/10.0001446
- Junqua J. The Lombard reflex and its role on human listeners and automatic speech recognizers. J Acoust Soc Am [Internet]. 1993 Jan;93(1):510–24. doi: https://doi.org/10.1121/1.405631
- Lu Y, Cooke M. Speech production modifications produced by competing talkers, babble, and stationary noise. J Acoust Soc Am [Internet]. 2008 Nov;124(5):3261–75. doi: https://doi.org/10.1121/1.2990705
- Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am [Internet]. 2018 Jun;143(6):EL523–9. doi: https://doi.org/10.1121/1.5042758
- Quedas A, de Campos Duprat A, Gasparini G. Lombard’s effect’s implication in intensity, fundamental frequency and stability on the voice of individuals with Parkinson’s disease. Braz J Otorhinolaryngol [Internet]. 2007 Sep;73(5):675–83. doi: https://doi.org/10.1016/S1808-8694(15)30129-4
- Purcell DW, Munhall KG. Compensation following real-time manipulation of formants in isolated vowels. J Acoust Soc Am [Internet]. 2006 Apr;119(4):2288–97. doi: https://doi.org/10.1121/1.2173514
- Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparison of voice Fo responses to pitch-shift onset and offset conditions. J Acoust Soc Am [Internet]. 2001 Dec;110(6):2845–8. doi: https://doi.org/10.1121/1.1417527
- Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang [Internet]. 2016 Nov;162:60–71. doi: https://doi.org/10.1016/j.bandl.2016.08.004
- Dick AS, Bernal B, Tremblay P. The Language Connectome. Neurosci [Internet]. 2014 Oct 15;20(5):453–67. doi: https://doi.org/10.1177/1073858413513502
- Guenther FH, Hickok G. Role of the auditory system in speech production. In: Aminoff M, Boller F, Swaab D, editora. Handbook of Clinical Neurology. Elsevier B.V.; 2015. p. 161–75. doi: https://doi.org/10.1016/B978-0-444-62630-1.00009-3
- Nasios G, Dardiotis E, Messinis L. From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation. Behav Neurol [Internet]. 2019 Jul 22;2019:1–10. doi: https://doi.org/10.1155/2019/9894571
- Hickok G. Computational neuroanatomy of speech production. Nat Rev Neurosci [Internet]. 2012 Feb 5;13(2):135–45. doi: https://doi.org/10.1038/nrn3158
- Kearney E, Nieto-Castañón A, Weerathunge HR, Falsini R, Daliri A, Abur D, et al. A Simple 3-Parameter Model for Examining Adaptation in Speech and Voice Production. Front Psychol [Internet]. 2020 Jan 21;10. doi: https://doi.org/10.3389/fpsyg.2019.02995
- Perkell JS. Movement goals and feedback and feedforward control mechanisms in speech production. J Neurolinguistics [Internet]. 2012 Sep;25(5):382–407. doi: https://doi.org/10.1016/j.jneuroling.2010.02.011
- Tourville JA, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process [Internet]. 2011 Aug;26(7):952–81. doi: https://doi.org/10.1080/01690960903498424
- Abur D, Lester-Smith RA, Daliri A, Lupiani AA, Guenther FH, Stepp CE. Sensorimotor adaptation of voice fundamental frequency in Parkinson’s disease. PLoS One [Internet]. 2018 Jan 26;13(1):e0191839. doi: https://doi.org/10.1371/journal.pone.0191839
- Houde JF, Nagarajan SS. Speech Production as State Feedback Control. Front Hum Neurosci [Internet]. 2011;5. doi: https://doi.org/10.3389/fnhum.2011.00082
- Stepp CE, Lester-Smith RA, Abur D, Daliri A, Pieter Noordzij J, Lupiani AA. Evidence for auditory-motor impairment in individuals with hyperfunctional voice disorders [Internet]. Journal of Speech, Language, and Hearing Research. American Speech-Language-Hearing Association; 2017 [cited 2021 Mar 10];60(6):1545–50. doi: https://doi.org/10.1044/2017_JSLHR-S-16-0282
- Jones JA, Munhall KG. Perceptual calibration of F0 production: Evidence from feedback perturbation. J Acoust Soc Am [Internet]. 2000 [cited 2021 Mar 9];108(3):1246. doi: https://doi.org/10.1121/1.1288414
- Aronson AE. Clinical Voice Disorders (3rd Ed). Thieme; 1990.
- Galindo GE, Peterson SD, Erath BD, Castro C, Hillman RE, Zañartu M. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds. J Speech, Lang Hear Res [Internet]. 2017 Sep 18;60(9):2452–71. doi: https://doi.org/10.1044/2017_JSLHR-S-16-0412
- Weerathunge HR, Abur D, Enos NM, Brown KM, Stepp CE. Auditory-Motor Perturbations of Voice Fundamental Frequency: Feedback Delay and Amplification. J Speech, Lang Hear Res [Internet]. 2020 Sep 15;63(9):2846–60. doi: https://doi.org/10.1044/2020_JSLHR-19-00407
- Arends N, Povel DJ, Van Os E, Speth L. Predicting voice quality of deaf speakers on the basis of glottal characteristics. J Speech Hear Res [Internet]. 1990 [cited 2021 Mar 9];33(1):116–22. doi: https://doi.org/10.1044/jshr.3301.116
- Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci [Internet]. 2013 Jun 10 [cited 2021 Mar 9];36(3):181–204. doi: https://doi.org/10.1017/S0140525X12000477
- Lester-Smith RA, Daliri A, Enos N, Abur D, Lupiani AA, Letcher S, et al. The relation of articulatory and vocal auditory–motor control in typical speakers. J Speech, Lang Hear Res [Internet]. 2020 Nov 1 [cited 2021 Mar 9];63(11):3628–42. doi: https://doi.org/10.1044/2020_JSLHR-20-00192
- Lee SH, Yu JF, Fang TJ, Lee GS. Vocal fold nodules: A disorder of phonation organs or auditory feedback? Clin Otolaryngol [Internet]. 2019 Nov 1 [cited 2021 Mar 9];44(6):975–82. doi: https://doi.org/10.1111/coa.13417
- Escera C, López-Caballero F, Gorina-Careta N. The potential effect of forbrain as an altered auditory feedback device. J Speech, Lang Hear Res [Internet]. 2018 Apr 1 [cited 2021 Mar 9];61(4):801–10. doi: https://doi.org/10.1044/2017_JSLHR-S-17-0072
- Li Y, Tan M, Fan H, Wang EQ, Chen L, Li J, et al. Neurobehavioral Effects of LSVT® LOUD on Auditory-Vocal Integration in Parkinson’s Disease: A Preliminary Study. Front Neurosci [Internet]. 2021 Feb 26;15. doi: https://doi.org/10.3389/fnins.2021.624801
- Ramig LO, Countryman S, O’Brien C, Hoehn M, Thompson L. Intensive speech treatment for patients with Parkinson’s disease: Short- and long-term comparison of two techniques. Neurology [Internet]. 1996 Dec 1;47(6):1496–504. doi: https://doi.org/10.1212/WNL.47.6.1496
- Narayana S, Fox PT, Zhang W, Franklin C, Robin DA, Vogel D, et al. Neural correlates of efficacy of voice therapy in Parkinson’s disease identified by performance-correlation analysis. Hum Brain Mapp [Internet]. 2010;31:222-236. doi: https://doi.org/10.1002/hbm.20859
- Segawa JA, Tourville JA, Beal DS, Guenther FH. The Neural Correlates of Speech Motor Sequence Learning. J Cogn Neurosci [Internet]. 2015 Apr;27(4):819–31. doi: https://doi.org/10.1162/jocn_a_00737