Alteración de la integración auditivo-vocal: nuevos retos y oportunidades para la evaluación y la terapia de la voz
Auditory-vocal integration impairment: New challenges and opportunities for voice assessment and therapy
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Mostrar biografía de los autores
Este artículo de reflexión aborda la importancia de la interacción entre la percepción y la producción de la voz, haciendo hincapié en los procesos de integración auditivo-vocal, los cuales aún no han sido muy divulgados en el contexto de los clínicos de voz. Dado lo anterior, este articulo busca: 1) destacar la importante relación entre la producción y la percepción de la voz y 2) considerar si esta relación pudiese explotarse clínicamente con fines diagnósticos y terapéuticos. Las teorías existentes sobre la producción de la voz y su interacción con la percepción auditiva proporcionan el contexto para discutir por qué la evaluación de los procesos auditivo-vocales podría ayudar a identificar los orígenes asociados a cierto tipo de disfonías e informar al clínico sobre las estrategias de abordaje adecuadas. La incorporación de la evaluación de la integración auditivo-vocal a través de la prueba del paradigma de adaptación sensoriomotora podría ser una importante adición a los protocolos de evaluación de la voz a nivel clínico. Además, si los estudios futuros pueden especificar los medios para manipular y mejorar la integración auditivo-vocal de una persona, la eficacia de la terapia de la voz podría aumentar, lo que llevaría a mejorar la calidad de vida de las personas con trastornos de la voz.
Visitas del artículo 724 | Visitas PDF 402
- Liberman AM, Mattingly IG. The motor theory of speech perception revised. Cognition [Internet]. 1985 Oct;21(1):1–36. doi: https://doi.org/10.1016/0010-0277(85)90021-6
- Fowler CA. Speech Perception as a Perceptuo-Motor Skill. In: Hickok G, Small S, editors. Neurobiology of Language [Internet]. Elsevier; 2016. p. 175–84. doi: https://doi.org/10.1016/B978-0-12-407794-2.00015-8
- Lotto AJ, Holt LL. Speech Perception. In: Hickok G, Small S, editors. Neurobiology of Language [Internet]. Elsevier; 2016 [cited 2021 Mar 9]. p. 185–94. doi: https://doi.org/10.1016/B978-0-12-407794-2.00016-X
- Kuang J, Liberman M. Integrating Voice Quality Cues in the Pitch Perception of Speech and Non-speech Utterances. Front Psychol [Internet]. 2018 Nov 29;9. doi: https://doi.org/10.3389/fpsyg.2018.02147
- Zhang Z. Mechanics of human voice production and control. J Acoust Soc Am [Internet]. 2016 Oct;140(4):2614–35. doi: https://doi.org/10.1121/1.4964509
- Liberman AM, Delattre P, Cooper FS. The Role of Selected Stimulus-Variables in the Perception of the Unvoiced Stop Consonants. Am J Psychol [Internet]. 1952 Oct;65(4):497. doi: https://doi.org/10.2307/1418032
- Liberman AM, Delattre PC, Gerstman LJ, Cooper FS. Tempo of frequency change as a cue for distinguishing classes of speech sounds. J Exp Psychol [Internet]. 1956;52(2):127–37. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0041240
- Liberman AM, Harris KS, Hoffman HS, Griffith BC. The discrimination of speech sounds within and across phoneme boundaries. J Exp Psychol [Internet]. 1957;54(5):358–68. doi: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0044417
- Hillenbrand JM, Houde RA. Role of Fo and Amplitude in the Perception of Intervocalic Glottal Stops. J Speech, Lang Hear Res [Internet]. 1996 Dec;39(6):1182–90. doi: https://doi.org/10.1044/jshr.3906.1182
- Hillenbrand J, Getty LA, Clark MJ, Wheeler K. Acoustic characteristics of American English vowels. J Acoust Soc Am [Internet]. 1995 May;97(5):3099–111. doi: https://doi.org/10.1121/1.411872
- Morrison GS, Assmann PF. Vowel Inherent Spectral Change [Internet]. Morrison GS, Assmann PF, editors. Vowel Inherent Spectral Change. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 1–286. Available from: http://link.springer.com/10.1007/978-3-642-14209-3
- Patel S, Nishimura C, Lodhavia A, Korzyukov O, Parkinson A, Robin DA, et al. Understanding the mechanisms underlying voluntary responses to pitch-shifted auditory feedback. J Acoust Soc Am [Internet]. 2014 May;135(5):3036–44. doi: https://doi.org/10.1121/1.4870490
- Parkinson AL, Flagmeier SG, Manes JL, Larson CR, Rogers B, Robin DA. Understanding the neural mechanisms involved in sensory control of voice production. Neuroimage [Internet]. 2012 May;61(1):314–22. doi: https://doi.org/10.1016/j.neuroimage.2012.02.068
- Patel RR, Awan SN, Barkmeier-Kraemer J, Courey M, Deliyski D, Eadie T, et al. Recommended protocols for instrumental assessment of voice: American speech-language-hearing association expert panel to develop a protocol for instrumental assessment of vocal function. Am J Speech-Language Pathol [Internet]. 2018 Aug 1 [cited 2021 Mar 9];27(3):887–905. doi: https://doi.org/10.1044/2018_AJSLP-17-0009
- Whittico TH, Ortiz AJ, Marks KL, Toles LE, Van Stan JH, Hillman RE, et al. Ambulatory monitoring of Lombard-related vocal characteristics in vocally healthy female speakers. J Acoust Soc Am [Internet]. 2020 Jun;147(6):EL552–8. doi: https://doi.org/10.1121/10.0001446
- Junqua J. The Lombard reflex and its role on human listeners and automatic speech recognizers. J Acoust Soc Am [Internet]. 1993 Jan;93(1):510–24. doi: https://doi.org/10.1121/1.405631
- Lu Y, Cooke M. Speech production modifications produced by competing talkers, babble, and stationary noise. J Acoust Soc Am [Internet]. 2008 Nov;124(5):3261–75. doi: https://doi.org/10.1121/1.2990705
- Alghamdi N, Maddock S, Marxer R, Barker J, Brown GJ. A corpus of audio-visual Lombard speech with frontal and profile views. J Acoust Soc Am [Internet]. 2018 Jun;143(6):EL523–9. doi: https://doi.org/10.1121/1.5042758
- Quedas A, de Campos Duprat A, Gasparini G. Lombard’s effect’s implication in intensity, fundamental frequency and stability on the voice of individuals with Parkinson’s disease. Braz J Otorhinolaryngol [Internet]. 2007 Sep;73(5):675–83. doi: https://doi.org/10.1016/S1808-8694(15)30129-4
- Purcell DW, Munhall KG. Compensation following real-time manipulation of formants in isolated vowels. J Acoust Soc Am [Internet]. 2006 Apr;119(4):2288–97. doi: https://doi.org/10.1121/1.2173514
- Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. Comparison of voice Fo responses to pitch-shift onset and offset conditions. J Acoust Soc Am [Internet]. 2001 Dec;110(6):2845–8. doi: https://doi.org/10.1121/1.1417527
- Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang [Internet]. 2016 Nov;162:60–71. doi: https://doi.org/10.1016/j.bandl.2016.08.004
- Dick AS, Bernal B, Tremblay P. The Language Connectome. Neurosci [Internet]. 2014 Oct 15;20(5):453–67. doi: https://doi.org/10.1177/1073858413513502
- Guenther FH, Hickok G. Role of the auditory system in speech production. In: Aminoff M, Boller F, Swaab D, editora. Handbook of Clinical Neurology. Elsevier B.V.; 2015. p. 161–75. doi: https://doi.org/10.1016/B978-0-444-62630-1.00009-3
- Nasios G, Dardiotis E, Messinis L. From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation. Behav Neurol [Internet]. 2019 Jul 22;2019:1–10. doi: https://doi.org/10.1155/2019/9894571
- Hickok G. Computational neuroanatomy of speech production. Nat Rev Neurosci [Internet]. 2012 Feb 5;13(2):135–45. doi: https://doi.org/10.1038/nrn3158
- Kearney E, Nieto-Castañón A, Weerathunge HR, Falsini R, Daliri A, Abur D, et al. A Simple 3-Parameter Model for Examining Adaptation in Speech and Voice Production. Front Psychol [Internet]. 2020 Jan 21;10. doi: https://doi.org/10.3389/fpsyg.2019.02995
- Perkell JS. Movement goals and feedback and feedforward control mechanisms in speech production. J Neurolinguistics [Internet]. 2012 Sep;25(5):382–407. doi: https://doi.org/10.1016/j.jneuroling.2010.02.011
- Tourville JA, Guenther FH. The DIVA model: A neural theory of speech acquisition and production. Lang Cogn Process [Internet]. 2011 Aug;26(7):952–81. doi: https://doi.org/10.1080/01690960903498424
- Abur D, Lester-Smith RA, Daliri A, Lupiani AA, Guenther FH, Stepp CE. Sensorimotor adaptation of voice fundamental frequency in Parkinson’s disease. PLoS One [Internet]. 2018 Jan 26;13(1):e0191839. doi: https://doi.org/10.1371/journal.pone.0191839
- Houde JF, Nagarajan SS. Speech Production as State Feedback Control. Front Hum Neurosci [Internet]. 2011;5. doi: https://doi.org/10.3389/fnhum.2011.00082
- Stepp CE, Lester-Smith RA, Abur D, Daliri A, Pieter Noordzij J, Lupiani AA. Evidence for auditory-motor impairment in individuals with hyperfunctional voice disorders [Internet]. Journal of Speech, Language, and Hearing Research. American Speech-Language-Hearing Association; 2017 [cited 2021 Mar 10];60(6):1545–50. doi: https://doi.org/10.1044/2017_JSLHR-S-16-0282
- Jones JA, Munhall KG. Perceptual calibration of F0 production: Evidence from feedback perturbation. J Acoust Soc Am [Internet]. 2000 [cited 2021 Mar 9];108(3):1246. doi: https://doi.org/10.1121/1.1288414
- Aronson AE. Clinical Voice Disorders (3rd Ed). Thieme; 1990.
- Galindo GE, Peterson SD, Erath BD, Castro C, Hillman RE, Zañartu M. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds. J Speech, Lang Hear Res [Internet]. 2017 Sep 18;60(9):2452–71. doi: https://doi.org/10.1044/2017_JSLHR-S-16-0412
- Weerathunge HR, Abur D, Enos NM, Brown KM, Stepp CE. Auditory-Motor Perturbations of Voice Fundamental Frequency: Feedback Delay and Amplification. J Speech, Lang Hear Res [Internet]. 2020 Sep 15;63(9):2846–60. doi: https://doi.org/10.1044/2020_JSLHR-19-00407
- Arends N, Povel DJ, Van Os E, Speth L. Predicting voice quality of deaf speakers on the basis of glottal characteristics. J Speech Hear Res [Internet]. 1990 [cited 2021 Mar 9];33(1):116–22. doi: https://doi.org/10.1044/jshr.3301.116
- Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci [Internet]. 2013 Jun 10 [cited 2021 Mar 9];36(3):181–204. doi: https://doi.org/10.1017/S0140525X12000477
- Lester-Smith RA, Daliri A, Enos N, Abur D, Lupiani AA, Letcher S, et al. The relation of articulatory and vocal auditory–motor control in typical speakers. J Speech, Lang Hear Res [Internet]. 2020 Nov 1 [cited 2021 Mar 9];63(11):3628–42. doi: https://doi.org/10.1044/2020_JSLHR-20-00192
- Lee SH, Yu JF, Fang TJ, Lee GS. Vocal fold nodules: A disorder of phonation organs or auditory feedback? Clin Otolaryngol [Internet]. 2019 Nov 1 [cited 2021 Mar 9];44(6):975–82. doi: https://doi.org/10.1111/coa.13417
- Escera C, López-Caballero F, Gorina-Careta N. The potential effect of forbrain as an altered auditory feedback device. J Speech, Lang Hear Res [Internet]. 2018 Apr 1 [cited 2021 Mar 9];61(4):801–10. doi: https://doi.org/10.1044/2017_JSLHR-S-17-0072
- Li Y, Tan M, Fan H, Wang EQ, Chen L, Li J, et al. Neurobehavioral Effects of LSVT® LOUD on Auditory-Vocal Integration in Parkinson’s Disease: A Preliminary Study. Front Neurosci [Internet]. 2021 Feb 26;15. doi: https://doi.org/10.3389/fnins.2021.624801
- Ramig LO, Countryman S, O’Brien C, Hoehn M, Thompson L. Intensive speech treatment for patients with Parkinson’s disease: Short- and long-term comparison of two techniques. Neurology [Internet]. 1996 Dec 1;47(6):1496–504. doi: https://doi.org/10.1212/WNL.47.6.1496
- Narayana S, Fox PT, Zhang W, Franklin C, Robin DA, Vogel D, et al. Neural correlates of efficacy of voice therapy in Parkinson’s disease identified by performance-correlation analysis. Hum Brain Mapp [Internet]. 2010;31:222-236. doi: https://doi.org/10.1002/hbm.20859
- Segawa JA, Tourville JA, Beal DS, Guenther FH. The Neural Correlates of Speech Motor Sequence Learning. J Cogn Neurosci [Internet]. 2015 Apr;27(4):819–31. doi: https://doi.org/10.1162/jocn_a_00737