Skip to main navigation menu Skip to main content Skip to site footer

Effects of an Aerobic Training Program on Reaction Time and DNA Methylation of SHANK3 Gene in Children with Autism Spectrum Disorder: a Pilot Study

Efectos de un programa de entrenamiento aeróbico en el tiempo de reacción y la metilación de ADN del gen SHANK3 en niños con trastorno de espectro autista: un estudio piloto



Open | Download


Section
Research Article

How to Cite
1.
Effects of an Aerobic Training Program on Reaction Time and DNA Methylation of SHANK3 Gene in Children with Autism Spectrum Disorder: a Pilot Study. Rev. Investig. Innov. Cienc. Salud [Internet]. 2023 Jul. 13 [cited 2025 Jan. 15];5(1):75-90. Available from: https://riics.info/index.php/RCMC/article/view/155

Dimensions
PlumX
Karim-Martina Alvis-Gómez
    Humberto Arboleda Granados
      Ana-Gabriela Concha-Mera

        Introduction. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that produces cognitive and motor deficits and it is caused by several mechanisms, including epigenetic regulation. Epigenetic processes can be influenced by environmental factors such as physical exercise.

        Objective. To analyze the effect of an aerobic physical exercise (APE) program on simple reaction time (SRT) and DNA methylation of island 2 of the SHANK3 gene in children with ASD.

        Materials and methods. A quasi-experimental study was carried out on a group of  9 children (7-11 years old) with ASD, who participated in a 10-week APE program. Differences in SRT and DNA methylation were analyzed using the Kruskall-Wallis test by considering a significance level p<0.05.

        Results. The median SRT decreased after the training program. However, no statistically significant difference was found (p = 0.53). A pattern of hypermethylation was observed in 11 dinucleotides, both before and after training, and a statistically significant difference was found in the CpG108 position (p = 0.032).

        Conclusion. A moderate to vigorous intensity of APE program has the potential to modify SRT and DNA methylation in children with ASD. However, it requires further studies with larger samples in which more genes are analyzed, to corroborate the results described here and strengthen knowledge about the effect of exercise on the epigenetic processes of this population.


        Article visits 692 | PDF visits 115


        1. Li D, Karnath HO, Xu X. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies. Neurosci Bull [Internet]. 2017 [citado 2022 nov 6];33(2):219-37. doi: https://doi.org/10.1007/s12264-017-0118-1
        2. Mosconi XMW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA. Feedforward and Feedback Motor Control Abnormalities Implicate Cerebellar Dysfunctions in Autism Spectrum Disorder. The Journal of neuroscience [Internet]. 2015 [citado 2022 oct 31];35(5):2015-25. doi: https://doi.org/10.1523/JNEUROSCI.2731-14.2015
        3. Gidley Larson JC, Bastian AJ, Donchin O, Shadmehr R, Mostofsky SH. Acquisition of internal models of motor tasks in children with autism. Brain [Internet]. 2008 [citado 2022 nov 6];131(11):2894-903. doi: https://doi.org/10.1093/brain/awn226
        4. Feller C, Dubois C, Eliez S, Schneider M. Episodic Future Thinking in Autism Spectrum Disorder and 22q11.2 Deletion Syndrome: Association with Anticipatory Pleasure and Social Functioning. J Autism Dev Disord [Internet]. 2021 dic 1 [citado 2022 nov 5];51(12):4587-604. doi: https://doi.org/10.1007/s10803-021-04903-2
        5. Zou T, Cao S, Liu W, Li L, Jiang J, Wu L. Is simple reaction time or choice reaction time an indicator of all-cause mortality or CVD mortality? [Internet]. Public Health. 2021 [citado 2022 nov 5];199:34-41. doi: https://doi.org/10.1016/j.puhe.2021.07.045
        6. Debrabant J, Gheysen F, Vingerhoets G, van Waelvelde H. Age-related differences in predictive response timing in children: Evidence from regularly relative to irregularly paced reaction time performance. Hum Mov Sci [Internet]. 2012 [citado 2022 nov 6];31(4):801-10. doi: https://doi.org/10.1016/j.humov.2011.09.006
        7. Zapparrata NM, Brooks PJ, Ober TM. Slower Processing Speed in Autism Spectrum Disorder: A Meta-analytic Investigation of Time-Based Tasks. J Autism Dev Disord [Internet]. 2022 [citado 2022 nov 6]. doi: https://doi.org/10.1007/s10803-022-05736-3
        8. Lopes Cardoso I, Almeida S. Genes Involved in the Development of autism. Int Arch Commun Disord [Internet]. 2019 [citado 2022 nov 6];2:11. doi: https://doi.org/10.23937/IACOD-2017/1710011
        9. Halabian R, Valizadeh Arshad, Ahmadi A, Saeedi P, Azimzadeh Jamalkandi S, Alivand MR. Laboratory methods to decipher epigenetic signatures: a comparative review [Internet]. Cellular and Molecular Biology Letters. 2021 [citado 2022 nov 6];26:Article42. doi: https://doi.org/10.1186/s11658-021-00290-9
        10. Mouat JS, LaSalle JM. The Promise of DNA Methylation in Understanding Multigenerational Factors in Autism Spectrum Disorders [Internet]. Frontiers in Genetics. 2022 [citado 2022 nov 6];13. doi: https://doi.org/10.3389/fgene.2022.831221
        11. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging [Internet]. 2011 [citado 2022 nov 6];32(7):1161-80. doi: https://doi.org/10.1016/j.neurobiolaging.2010.08.017
        12. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci [Internet]. 2017;18(3):147-57. doi: https://doi.org/10.1038/nrn.2016.183
        13. Srancikova A, Reichova A, Bacova Z, Bakos J. Gene expression levels of DNA methyltransferase enzymes in Shank3-deficient mouse model of autism during early development. Endocr Regul [Internet]. 2021 oct 1 [citado 2022 nov 6];55(4):234-7. doi: https://doi.org/10.2478/enr-2021-0025
        14. Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet [Internet]. 2014 [citado 2022 nov 6];23(6):1563-78. doi: https://doi.org/10.1093/hmg/ddt547
        15. Huang J, Du C, Liu J, Tan G. Meta-Analysis on Intervention Effects of Physical Activities on Children and Adolescents with Autism. Int J Environ Res Public Health [Internet]. 2020 mar 17 [citado 2022 nov 6];17(6). doi: https://doi.org/10.3390/ijerph17061950
        16. Liang X, Li R, Wong SHS, Sum RKW, Wang P, Yang B, et al. The Effects of Exercise Interventions on Executive Functions in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review and Meta-analysis [Internet]. Sports Medicine. 2022 [citado 2022 nov 6];52:75-88. doi: https://doi.org/10.1007/s40279-021-01545-3
        17. Tse A. Brief Report: Impact of a Physical Exercise Intervention on Emotion Regulation and Behavioral Functioning in Children with Autism Spectrum Disorder. J Autism Dev Disord [Internet]. 2020 nov 1 [citado 2022 nov 6];50(11):4191-8. doi: https://doi.org/10.1007/s10803-020-04418-2
        18. Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The Impact of Exercise on Telomere Length, DNA Methylation and Metabolic Footprints [Internet]. Cells. 2022 [citado 2022 nov 6];11(1):153. doi: https://doi.org/10.3390/cells11010153
        19. Liang J, Wang H, Zeng Y, Qu Y, Liu Q, Zhao F, et al. Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins. Rev Neurosci [Internet]. 2021 ago 1 [citado 2022 nov 6];32(6):615-29. doi: https://doi.org/10.1515/revneuro-2020-0099
        20. King-Himmelreich TS, Schramm S, Wolters MC, Schmetzer J, Möser C v., Knothe C, et al. The impact of endurance exercise on global and AMPK gene-specific DNA methylation. Biochem Biophys Res Commun [Internet]. 2016 [citado 2022 nov 6];474(2):284-90. doi: https://doi.org/10.1016/j.bbrc.2016.04.078
        21. Tomiga Y, Sakai K, Ra S-G, Kusano M, Ito A, Uehara Y, et al. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. Federation of American Societies for Experimental Biology [Internet]. 2021 abr [citado 2022 nov 6];35(8):1-45. doi: https://doi.org/10.1096/fj.202100630R
        22. Urdinguio RG, Tejedor JR, Fernández-Sanjurjo M, Pérez RF, Peñarroya A, Ferrero C, et al. Physical exercise shapes the mouse brain epigenome. Mol Metab [Internet]. 2021 dic 1 [citado 2022 nov 6];54. doi: https://doi.org/10.1016/j.molmet.2021.101398
        23. Ferrari L, Vicenzi M, Tarantini L, Barretta F, Sironi S, Baccarelli AA, et al. Effects of physical exercise on endothelial function and DNA methylation. Int J Environ Res Public Health [Internet]. 2019 [citado 2022 nov 9];16(14):Article2530. doi: https://doi.org/10.3390/ijerph16142530
        24. Ngwa JS, Nwulia E, Ntekim O, Bedada FB, Kwabi-Addo B, Nadarajah S, et al. Aerobic Exercise Training-Induced Changes on DNA Methylation in Mild Cognitively Impaired Elderly African Americans: Gene, Exercise, and Memory Study - GEMS-I. Front Mol Neurosci [Internet]. 2022 ene 17 [citado 2022 nov 9];14. doi: https://doi.org/10.3389/fnmol.2021.752403
        25. Breidbord J, Croudace TJ. Reliability generalization for childhood autism rating scale. J Autism Dev Disord [Internet]. 2013 [citado 2022 nov 6];43(12):2855-65. doi: https://doi.org/10.1007/s10803-013-1832-9
        26. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour [Internet]. British Journal of Sports Medicine. 2020 [citado 2022 oct 5];54:1451-62. doi: https://doi.org/10.1136/bjsports-2020-102955
        27. Srinivasan SM, Pescatello LS, Bhat AN. Current Perspectives on Physical Activity and Exercise Recommendations for Children and Adolescents With Autism Spectrum Disorders. Phys Ther [Internet]. 2014 [citado 2022 oct 31];94(6):875-89. doi: https://doi.org/10.2522/ptj.20130157
        28. Marjerrison AD, Woodruff ME, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport [Internet]. 2010 [citado 2022 nov 4];81(4):466-71. doi: https://doi.org/10.1080/02701367.2010.10599707
        29. Machado FA, Denadai BS. Validity of Maximum Heart Rate Prediction Equations for Children and Adolescents. Arq Bras Cardiol [Internet]. 2011 [citado 2022 oct 29];97(2):136-40. doi: https://doi.org/10.1590/S0066-782X2011005000078
        30. Liverani MC, Manuel AL, Nahum L, Guardabassi V, Tomasetto C, Schnider A. Children’s sense of reality: The development of orbitofrontal reality filtering. Child Neuropsychology [Internet]. 2017 may 19 [citado 2022 nov 4];23(4):408-21. doi: https://doi.org/10.1080/09297049.2015.1120861
        31. Dave J, Grover P, Deo M. Submaximal exercises cause immediate reduction in the visual reaction time in normal individuals. Journal of Society of Indian Physiotherapists [Internet]. 2021 [citado 2022 nov 1];5(2):59. doi: https://doi.org/10.4103/jsip.jsip_8_21
        32. Salcedo-Tacuma D, Melgarejo JD, Mahecha MF, Ortega-Rojas J, Carlos †, Arboleda-Bustos E, et al. Differential Methylation Levels in CpGs of the BIN1 Gene in Individuals With Alzheimer Disease [Internet]. Alzheimer Disease & Associated Disorders. 2019;33(4):p 321-326. doi: https://doi.org/10.1097/WAD.0000000000000329
        33. Pan CY, Chu CH, Tsai CL, Sung MC, Huang CY, Ma WY. The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism [Internet]. 2017 [citado 2022 nov 6];21(2):190-202. doi: https://doi.org/10.1177/1362361316633562
        34. Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev [Internet]. 2017 sep [citado 2021 ago 12];80:443-56. doi: https://doi.org/10.1016/j.neubiorev.2017.06.012
        35. Renó UP, Soares SF, Penteado JL, Casanova A, Nóbrega C, de Oliveira EM. Exercise training and epigenetic regulation: Multilevel modification and regulation of gene expression. En: Wim E. Crusio, Haidong Dong, Heinfried H, editores. Advances in Experimental Medicine and Biology [Internet]. Springer Singapore; 2017 [citado 2022 nov 6]. p. 281-322. doi: https://doi.org/10.1007/978-981-10-4304-8_16
        36. Wu G, Zhang X, Gao F. The epigenetic landscape of exercise in cardiac health and disease [Internet]. Journal of Sport and Health Science. 2021 [citado 2022 nov 9];10:648-59. doi: https://doi.org/10.1016/j.jshs.2020.12.003
        37. Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines [Internet]. 2022 ene 1 [citado 2022 nov 9];10(1). doi: https://doi.org/10.3390/biomedicines10010126
        38. Wagner MA, Erickson KI, Bender CM, Conley YP. The Influence of Physical Activity and Epigenomics On Cognitive Function and Brain Health in Breast Cancer [Internet]. Frontiers in Aging Neuroscience. 2020 [citado 2022 nov 9];12. doi: https://doi.org/10.3389/fnagi.2020.00123
        39. Brodeur DA, Stewart J, Dawkins T, Burack JA. Utilitarian Attention by Children with Autism Spectrum Disorder on a Filtering Task. J Autism Dev Disord [Internet]. 2018 [citado 2022 ago 6];48:4019-4027. doi: https://doi.org/10.1007/s10803-018-3619-5
        40. Bar-haim Y, Shulman C, Lamy D, Reuveni A. Attention to Eyes and Mouth in High-Functioning Children with Autism. 2006 [citado 2022 ago 6];36(1). doi: https://doi.org/10.1007/s10803-005-0046-1
        41. Bucsuházy K, Semela M. Case Study: Reaction Time of Children According to Age. Procedia Eng [Internet]. 2017 [citado 2022 ago 6];187:408-13. doi: https://doi.org/10.1016/j.proeng.2017.04.393
        42. Ludyga S, Gerber M, Herrmann C, Brand S, Pühse U. Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends Neurosci Educ [Internet]. 2018 [citado 2022 sep 6];10(June 2017):1-7. doi: https://doi.org/10.1016/j.tine.2017.11.001
        43. Chuang LY, Tsai YJ, Chang YK, Huang CJ, Hung TM. Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: An ERP study. J Sport Health Sci [Internet]. 2015 [citado 2022 ago 6];4(1):82-8. doi: https://doi.org/10.1016/j.jshs.2014.11.002
        44. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP. Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry [Internet]. 2014 [citado 2022 ago 6];4(9):e460. doi: https://doi.org/10.1038/tp.2014.87
        45. Wong CCY, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry [Internet]. 2014 [citado 2022 ago 6];19(4):495-503. doi: https://doi.org/10.1038/mp.2013.41
        46. Ching TT, Maunakea AK, Jun P, Hong C, Zardo G, Pinkel D, et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet [Internet]. 2005 [citado 2022 ago 6];37(6):645-51. doi: https://doi.org/10.1038/ng1563
        47. Tsang SY, Ahmad T, Mat FWK, Zhao C, Xiao S, Xia K, et al. Variation of global DNA methylation levels with age and in autistic children. Hum Genomics [Internet]. 2016 [citado 2022 ago 6];10(1):31. doi: https://doi.org/10.1186/s40246-016-0086-y
        48. Bruno LP, Doddato G, Valentino F, Baldassarri M, Tita R, Fallerini C, et al. New candidates for autism/intellectual disability identified by whole-exome sequencing. Int J Mol Sci [Internet]. 2021 dic 1 [citado 2022 nov 6];22(24). doi: https://doi.org/10.3390/ijms222413439
        49. Andrews S v., Sheppard B, Windham GC, Schieve LA, Schendel DE, Croen LA, et al. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Mol Autism [Internet]. 2018 [citado 2022 ago 6];9(1):1-11. doi: https://doi.org/10.1186/s13229-018-0224-6
        50. Rodrigues GM, Toffoli L v., Manfredo MH, Francis-Oliveira J, Silva AS, Raquel HA, et al. Acute stress affects the global DNA methylation profile in rat brain: Modulation by physical exercise. Behavioural Brain Research [Internet]. 2015 [citado 2022 ago 6];279:123-8. doi: https://doi.org/10.1016/j.bbr.2014.11.023
        51. Światowy WJ, Drzewiecka H, Kliber M, Sąsiadek M, Karpiński P, Pławski A, et al. Physical activity and DNA methylation in humans [Internet]. International Journal of Molecular Sciences. 2021 [citado 2022 nov 6];22(23):Article12989. doi: https://doi.org/10.3390/ijms222312989
        52. Gillman AS, Helmuth T, Koljack CE, Hutchison KE, Kohrt WM, Bryan AD. The effects of exercise duration and intensity on breast cancer-related dna methylation: A randomized controlled trial. Cancers (Basel) [Internet]. 2021 ago 2 [citado 2022 nov 6];13(16). doi: https://doi.org/10.3390/cancers13164128
        53. Stevenson AJ, McCartney DL, Gadd DA, Shireby G, Hillary RF, King D, et al. A comparison of blood and brain-derived ageing and inflammation-related DNA methylation signatures and their association with microglial burdens. European Journal of Neuroscience [Internet]. 2022 [citado 2022 nov 6]. doi: https://doi.org/10.1111/ejn.15661
        54. Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry [Internet]. 2019 ene 31 [citado 2022 ago 6];9(47). doi: https://doi.org/10.1038/s41398-019-0376-y
        Sistema OJS 3.4.0.7 - Metabiblioteca |