Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

El efecto de diferentes intensidades de entrenamiento sobre el aumento de los niveles de adiponectina en ratones (Mus musculus) inducidos por alta fructosa

The Effect of Difference Training Intensity on Increased Adiponectin Levels in High-fructose-induced Mice (Mus musculus)



Abrir | Descargar


Sección
Artículos de investigación

Cómo citar
1.
El efecto de diferentes intensidades de entrenamiento sobre el aumento de los niveles de adiponectina en ratones (Mus musculus) inducidos por alta fructosa. Rev. Investig. Innov. Cienc. Salud [Internet]. 2024 Sep. 11 [cited 2024 Dec. 3];:In press. Available from: https://riics.info/index.php/RCMC/article/view/314

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Dwi Indah Puspita
    Purwo Sri Rejeki
      Gadis Meinar Sari
        Misbakhul Munir
          Nabilah Izzatunnisa

            Introducción. El consumo excesivo de fructosa se ha asociado con la aparición de la obesidad y una serie de disfunciones metabólicas. Se postula que el ejercicio físico es una intervención potente para mejorar las anomalías metabólicas inducidas por la obesidad, aparentemente a través del aumento de las concentraciones de adiponectina. Sin embargo, los mecanismos moleculares subyacentes a este efecto siguen sin comprenderse adecuadamente.

            Objetivo. Este estudio tiene como objetivo demostrar el impacto de la intensidad del ejercicio en el aumento de los niveles de adiponectina en ratones inducidos por alto contenido en fructosa, destacando los mecanismos moleculares subyacentes.

            Métodos. El experimento se realizó en 36 ratones machos (Mus musculus), de ±8 semanas de edad, con un peso corporal de ± 20 - 25 gramos, en condiciones saludables y sin defectos. Los ratones se dividieron aleatoriamente en cuatro grupos. El grupo control sin entrenamiento (CN; n = 9); el grupo de entrenamiento de natación de baja intensidad con una carga del 3% del peso corporal de los ratones (LI; n = 9); el grupo de entrenamiento de natación de intensidad moderada con una carga del 6% del peso corporal de los ratones (MI; n = 9); y el grupo de entrenamiento de natación de alta intensidad con una carga del 9% del peso corporal de los ratones (HI; n = 9). La frecuencia del entrenamiento de natación se llevó a cabo 3 veces/semana durante 8 semanas, y la duración del entrenamiento de natación se calculó como el 80% del tiempo máximo de natación en cada sesión. Todos los grupos recibieron una solución de fructosa al 30% por vía oral (ad libitum) durante 8 semanas. Los niveles de adiponectina se cuantificaron mediante ELISA. El análisis estadístico se realizó mediante ANOVA de una vía y la prueba post hoc de Tukey HSD, con un umbral de significancia establecido en 5%.

            Resultados. Los resultados indicaron una divergencia estadísticamente significativa en los niveles de adiponectina (p ≤ 0.001). El análisis post hoc de Tukey HSD reveló diferencias sustanciales entre CN y LI (p = 0.196), CN y MI (p = 0.0001), CN y HI (p = 0.001), LI y MI (p = 0.001), LI y HI (p = 0.001), y MI y HI (p = 0.001).

            Conclusión. Este estudio encontró que el entrenamiento de natación de intensidad moderada fue más óptimo para aumentar los niveles de adiponectina en ratones inducidos por fructosa en comparación con los grupos de alta intensidad, baja intensidad y control. Además, esta investigación identificó vías moleculares específicas activadas por el entrenamiento de intensidad moderada, proporcionando nuevas perspectivas para intervenciones terapéuticas en la lucha contra las disfunciones metabólicas relacionadas con la obesidad.


            Visitas del artículo 217 | Visitas PDF


            1. Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med [Internet]. 2017;5(7):1-12. doi: https://doi.org/10.21037/atm.2017.03.107
            2. Mamdouh H, Hussain HY, Ibrahim GM, Alawadi F, Hassanein M, et al. Prevalence and associated risk factors of overweight and obesity among adult population in Dubai: a population-based cross-sectional survey in Dubai, the United Arab Emirates. BMJ Open [Internet]. 2023;13(1):e062053. doi: https://doi.org/10.1136/bmjopen-2022-062053
            3. Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res [Internet]. 2017;122:1-7. doi: https://doi.org/10.1016/j.phrs.2017.05.013
            4. World Obesity Federation [Internet]. England & Wales: The Federation; c2022. World Obesity Atlas 2022; [about 3 screens]. Available from: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022
            5. Basic Health Research (Riskesdas). National Report on Basic Health Research. Jakarta: Kemenkes RI. 2018. Available at: https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/1/Laporan%20Riskesdas%202018%20Nasional.pdf
            6. Ozcan Sinir G, Suna S, Inan S, Bagdas D, Tamer CE, Copur OU, et al. Effects of long-term consumption of high fructose corn syrup containing peach nectar on body weight gain in sprague dawley rats. Food Sci Technol (Campinas) [Internet]. 2017;37(2):337-43. doi: https://doi.org/10.1590/1678-457x.25416
            7. Pereira RM, Botezelli JD, da Cruz Rodrigues KC, Mekari RA, Esper Cintra D, Pauli JR, et al. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients [Internet]. 2017;9(4):1-21. doi: https://doi.org/10.3390/nu9040405
            8. Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol [Internet]. 2016;8(2):93-100. doi: https://doi.org/10.1093/jmcb/mjw011
            9. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism [Internet]. 2019;92:71-81. doi: https://doi.org/10.1016/j.metabol.2018.11.005
            10. Nguyen TMD. Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med [Internet]. 2020;11(1):136. doi: https://doi.org/10.4103/ijpvm.IJPVM_193_20
            11. Aleidi S, Issa A, Bustanji H, Khalil M, Bustanji Y. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharm J [Internet]. 2015;23(3):250-6. doi: https://doi.org/10.1016/j.jsps.2014.11.011
            12. Liu W, Zhou X, Li Y, Zhang S, Cai X, Zhang R, et al. Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus. A population-based study. Medicine (Baltimore) [Internet]. 2020;99(6):e19052. doi: https://doi.org/10.1097/MD.0000000000019052
            13. Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J Diabetes [Internet]. 2015;6(15):1296-1308. doi: https://doi.org/10.4239/wjd.v6.i15.1296
            14. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol [Internet]. 2021;320(3):C375-C391. doi: https://doi.org/10.1152/ajpcell.00379.2020
            15. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int [Internet]. 2014;2014:658913. doi: https://doi.org/10.1155/2014/658913
            16. Arena R, Sagner M, Byrne NM, Williams AD, McNeil A, Street SJ, et al. Novel approaches for the promotion of physical activity and exercise for prevention and management of type 2 diabetes. Eur J Clin Nutr [Internet]. 2017;71(7):858-64. doi: https://doi.org/10.1038/ejcn.2017.53
            17. Pranoto A, Cahyono MBA, Yakobus R, Izzatunnisa N, Ramadhan RN, Rejeki PS, et al. Long-Term Resistance-Endurance Combined Training Reduces Pro-Inflammatory Cytokines in Young Adult Females with Obesity. Sports (Basel) [Internet]. 2023;11(3):1-12. doi: https://doi.org/10.3390/sports11030054
            18. Rejeki PS, Pranoto A, Rahmanto I, Izzatunnisa N, Yosika GF, Hernaningsih Y, et al. The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel) [Internet]. 2023;11(4):1-13. doi: https://doi.org/10.3390/sports11040090
            19. Zhang Y, Xu J, Zhou D, Ye, T, Zhou P, Liu Z, et al. Swimming exercise ameliorates insulin resistance and nonalcoholic fatty liver by negatively regulating PPARγ transcriptional network in mice fed high fat diet. Mol Med [Internet]. 2023;29(1):150. doi: https://doi.org/10.1186/s10020-023-00740-4
            20. Krause MP, Milne KJ, Hawke TJ. Adiponectin-Consideration for its Role in Skeletal Muscle Health. Int J Mol Sci [Internet]. 2019;20(7):1-17. doi: https://doi.org/10.3390/ijms20071528
            21. Zelikovich AS, Quattrocelli M, Salamone IM, Kuntz NL, McNally EM. Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy. Sci Rep [Internet]. 2019;9(1):5770. doi: https://doi.org/10.1038/s41598-019-42203-z
            22. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev [Internet]. 2012;26(3):271-81. doi: https://doi.org/10.1101/gad.177857.111
            23. Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem [Internet]. 2011;286(40):34533-41. doi: https://doi.org/10.1074/jbc.M111.248591
            24. Lin Z, Tian H, Lam KS, Lin S, Hoo RCL, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779-89. doi: https://doi.org/10.1016/j.cmet.2013.04.005
            25. Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS, et al. Rodent models of obesity. Minerva Endocrinol [Internet]. 2020;45(3):243-63. doi: https://doi.org/10.23736/S0391-1977.19.03058-X
            26. Yu L, Fu M, Yang L, Sun H. Fasting Blood Glucose-Based Novel Predictors in Detecting Metastases and Predicting Prognosis for Patients with PNENs. J Pers Med [Internet]. 2024;14(7):1-15. doi: https://doi.org/10.3390/jpm14070760
            27. Beck AP, Meyerholz DK. Evolving challenges to model human diseases for translational research. Cell Tissue Res [Internet]. 2020;380(2):305-11. doi: https://doi.org/10.1007/s00441-019-03134-3
            28. Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells [Internet]. 2021;10(10):1-29. doi: https://doi.org/10.3390/cells10102639
            29. Yuliastrid D, Kusnanik NW, Purwanto B, Noordia A, Purwoto SP, Pranoto A. Single bout of a long-duration running treadmill increases myoglobin but not haemoglobin and interleukin 6 levels in mice (Mus musculus). Comp Exerc Physiol [Internet]. 2023;19(4):353-9. doi: https://doi.org/10.1163/17552559-20220075
            30. Prasetya RE, Umijati S, Rejeki PS. Effect of Moderate Intensity Exercise on Body Weight and Blood Estrogen Level Ovariectomized Mice. Majalah Kedokteran Bandung [Internet]. 2018;50(3):147-51. doi: https://doi.org/10.15395/mkb.v50n3.1368
            31. Sari DR, Ramadhan RN, Agustin D, Munir M, Izzatunnisa N, Susanto J, et al. The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose-Induced Mice. Retos [Internet]. 2024;51:1194-209. doi: https://doi.org/10.47197/retos.v51.101189
            32. Wigati KW, Bintari MP, Rejeki PS, Wungu CDK, Pranoto A, Ramadhan RN, et al. The effect of 4 week-long swimming exercise intervention on increased serotonin levels in male mice (Mus musculus). Comp Exerc Physiol [Internet]. 2023;19(4):361-70. doi: https://doi.org/10.1163/17552559-20230005
            33. Riahi F, Riyahi S . Effect of Moderate Swimming Exercise on Weight Gain in High Fat Diet Rats. Ann Mil Health Sci Res [Internet]. 2016;14(1):e13819. Available from: https://brieflands.com/articles/amhsr-13819
            34. Acikel Elmas M, Cakıcı SE, Dur IR, Kozluca I, Arınc M, Binbuga B, et al. Protective effects of exercise on heart and aorta in high-fat diet-induced obese rats. Tissue Cell [Internet]. 2019;57:57-65. doi: https://doi.org/10.1016/j.tice.2019.01.005
            35. Kolieb E, Maher SA, Shalaby MN, Alsuhaibani AM, Alharthi A, Hassan WA, et al. Vitamin D and Swimming Exercise Prevent Obesity in Rats under a High-Fat Diet via Targeting FATP4 and TLR4 in the Liver and Adipose Tissue. Int J Environ Res Public Health [Internet]. 2022;19(21):1-22. doi: https://doi.org/10.3390/ijerph192113740
            36. Antoni MF, Rejeki PS, Sulistiawati, Pranoto A, Wigati KW, Sari GM, et al. Effect of nocturnal and diurnal moderate-intensity swimming exercise on increasing irisin level of female mice (Mus musculus). CMUJ Nat Sci [Internet]. 2022;21(2):e2022033. Available from: https://repository.unair.ac.id/116850/
            37. Chen YM, Lian CF, Sun QW, Wang TT, Liu YY, Ye J, et al. Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice. Antioxidants (Basel) [Internet]. 2022;11(5):1-19. doi: https://doi.org/10.3390/antiox11050905
            38. Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. J Sport Health Sci [Internet]. 2020;9(1):53-73. doi: https://doi.org/10.1016/j.jshs.2019.07.004
            39. Rahayu FK, Dwiningsih SR, Sa'adi A, Herawati L. Effects of different intensities of exercise on folliculogenesis in mice: Which is better?. Clin Exp Reprod Med [Internet]. 2021;48(1):43-9. doi: https://doi.org/10.5653/cerm.2020.03937
            40. Rezaie P, Mazidi M, Nematy M. Ghrelin, food intake, and botanical extracts: A Review. Avicenna J Phytomed [Internet]. 2015;5(4):271-81. doi: https://doi.org/10.22038/ajp.2015.4196
            41. Sholikhah AM, Ridwan M. Swimming training on moderate intensity significantly reduces total cholesterol and bodyweight on hypercholesterolemic rat model. Jurnal Keolahragaan [Internet]. 2021;9(1):51-8. doi: https://doi.org/10.21831/jk.v9i1.33362
            42. Alfin R, Busjra B, Azzam R. [The Effect of Ramadan Fasting on Blood Sugar Levels in Type II Diabetes Mellitus Patients]. Journal of Telenursing (JOTING) [Internet]. 2019;1(1):191-204. doi: https://doi.org/https://doi.org/10.31539/joting.v1i1.499
            43. Nakrani MN, Wineland RH, Anjum F. Physiology, Glucose Metabolism. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560599/
            44. Geng L, Liao B, Jin L, Huang Z, Triggle C, Ding H, et al. Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep [Internet]. 2019;26(10):2738-52.e4. doi: https://doi.org/10.1016/j.celrep.2019.02.014
            45. Jortay J, Senou M, Abou-Samra M, Noel L, Robert A, Many MC, et al. Adiponectin and skeletal muscle: pathophysiological implications in metabolic stress. Am J Pathol [Internet]. 2012;181(1):245-56. doi: https://doi.org/10.1016/j.ajpath.2012.03.035
            46. Martinez-Huenchullan SF, Maharjan BR, Williams PF, Tam CS, Mclennan SV, Twigg SM. Differential metabolic effects of constant moderate versus high intensity interval training in high-fat fed mice: possible role of muscle adiponectin. Physiol Rep [Internet]. 2018;6(4):e13599. doi: https://doi.org/10.14814/phy2.13599
            47. Xie Y, Li Z, Wang Y, Xue X, Ma W, Zhang Y, Wang J, et al. Effects of moderate- versus high- intensity swimming training on inflammatory and CD4+ T cell subset profiles in experimental autoimmune encephalomyelitis mice. J Neuroimmunol [Internet]. 2019;328:60-7. doi: https://doi.org/10.1016/j.jneuroim.2018.12.005
            48. Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, et al. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener [Internet]. 2023;12(1):9. doi: https://doi.org/10.1186/s40035-023-00341-5
            49. Achari AE, Jain SK. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci [Internet]. 2017;18(6):1-17. doi: https://doi.org/10.3390/ijms18061321
            Sistema OJS 3.4.0.7 - Metabiblioteca |