Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Uso de señales geométricas y caracterológicas en configuraciones de puntos de referencia para reorientar a los niños con TDC hacia el espacio de realidad virtual: Un estudio de aprendizaje de rutas

Use of geometry and featural cues in landmark configurations to reorient DCD children to the VR space: A route-learning study



Abrir | Descargar


Sección
Artículos de investigación

Cómo citar
1.
Uso de señales geométricas y caracterológicas en configuraciones de puntos de referencia para reorientar a los niños con TDC hacia el espacio de realidad virtual: Un estudio de aprendizaje de rutas. Rev. Investig. Innov. Cienc. Salud [Internet]. 2023 Dec. 13 [cited 2025 Jan. 15];6(2):5-39. Available from: https://riics.info/index.php/RCMC/article/view/263

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Chrysanthi Basdekidou
    Athanasios Styliadis
      Alexandros Argyriadis
        Levente Dimen

          Antecedentes. La cognición espacial basada en la memoria de trabajo ha atraído la atención de la comunidad científica en proyectos de navegación y reorientación. El enfoque dominante considera que el comportamiento espontáneo de navegación espacial se basa meramente en la geometría ambiental (objetos ambientales construidos y naturales). En este ámbito, los problemas de orientación de las habilidades motoras del TDC (Trastorno del Desarrollo de la Coordinación) se han asociado con frecuencia a una cognición visoespacial deficiente, mientras que los entornos de RV (Realidad Virtual) inmersivos fomentan una mayor repetición, lo que permite un desarrollo y una recuperación más rápidos de las habilidades motoras.

          Objetivo. Este estudio piloto probó la funcionalidad de un entorno de RV inmersiva con geometría ambiental (arena rectangular rica en simetría) y señales de puntos de referencia característicos (pared rayada, flora) como herramienta de aprendizaje de rutas para niños con trastornos de la habilidad motora.

          Métodos. Cuarenta niños con TDC de entre 5 y 8 años (20 niños y 20 niñas); cinco (5) configuraciones de modelado de realidad 3D con ortogonalidad, simetría y paredes rayadas como parámetros de diseño; y ejercicios de coordinación de recorrido de prueba utilizando una ruta visual predefinida con diferentes condiciones de control motor (luz diurna, oscuridad). Se registraron la tasa de finalización del recorrido, el tiempo de finalización del recorrido y el grado de satisfacción de los participantes como variables de rendimiento del aprendizaje de recorridos y se analizaron estadísticamente.

          Resultados. Se demostró estadísticamente que la orientación espacial de los niños con TDC era más estable y robusta (en tasas de finalización del camino, tiempo de finalización y nivel de satisfacción del recorrido) en un entorno 3D virtual rico en ortogonalidad, simetría y señales de características como puntos de referencia. En esta configuración de geometría ambiental compuesta, la funcionalidad del entrenamiento y el rendimiento del aprendizaje inmersivo disfrutaron de un 8,16% más de tasa de finalización de ruta, una reducción del 12,37% en el tiempo de finalización de ruta y un 32,10% más de satisfacción de recorrido que las configuraciones de modelado de realidad pobres en geometría y puntos de referencia. La eficacia y la solidez se validaron estadísticamente.

          Conclusiones. Los niños con dificultades motrices entrenan y aprenden mejor en entornos virtuales 3D ricos en ortogonalidad, simetría y puntos de referencia característicos.


          Visitas del artículo 435 | Visitas PDF 143


          1. Liu Z, He Z, Yuan J, Lin H, Fu C, Zhang Y, et al. Application of Immersive Virtual-Reality-Based Puzzle Games in Elderly Patients with Post-Stroke Cognitive Impairment: A Pilot Study. Brain Sci [Internet]. 2023;13(1):1-19. doi: https://doi.org/10.3390/brainsci13010079
          2. Huang K. Exergaming Executive Functions: An Immersive Virtual Reality-Based Cognitive Training for Adults Aged 50 and Older. Cyberpsychol Behav Soc Netw [Internet]. 2020;23(3):143-49. doi: https://doi.org/10.1089/cyber.2019.0269
          3. Parsons TD. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front Hum. Neurosci [Internet]. 2015;9:1-19. doi: https://doi.org/10.3389/fnhum.2015.00660
          4. Huang LC, Yang YH. The Long-term Effects of Immersive Virtual Reality Reminiscence in People With Dementia: Longitudinal Observational Study. JMIR Serious Games [Internet]. 2022;10(3):1-9. doi: https://doi.org/10.2196/36720
          5. Paredes Arturo YV, Zapata Zabala ME, Martínez Pérez JF, Germán Wilmot LJ, Cuartas Arias JM. Intellectual capacity in children with chronic malnutrition. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2019 Dec 31;1(2):87-95. doi: https://doi.org/10.46634/riics.27
          6. Liu JYW, Yin YH, Kin Kor PP, Ki Cheung DS, Yan Zhao I, Wang S, et al. The Effects of Immersive Virtual Reality Applications on Enhancing the Learning Outcomes of Undergraduate Health Care Students: Systematic Review with Meta-synthesis. J Med Internet Res [Internet]. 2023;25:1-24. doi: https://doi.org/10.2196/39989
          7. Kiper P, Szczudlik A, Agostini M, Opara J, Nowobilski R, Ventura L, et al. Virtual Reality for Upper Limb Rehabilitation in Subacute and Chronic Stroke: A Randomized Controlled Trial. Arch Phys Med Rehabil [Internet]. 2018;99(5):834-42. doi: https://doi.org/10.1016/j.apmr.2018.01.023
          8. Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced Feedback in Virtual Environment for Rehabilitation of Upper Extremity Dysfunction after Stroke: Preliminary Data from a Randomized Controlled Trial. Biomed Res Int [Internet]. 2014;2014:1-8. doi: https://doi.org/10.1155/2014/752128
          9. Montoya Grisales NE, González Palacio EV. Musculoskeletal disorders, stress, and life quality in professors of Servicio Nacional de Aprendizaje. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2022 Dec 9;4(2):5-19. doi: https://doi.org/10.46634/riics.138
          10. Perez-Trejos LE, Gómez Salazar L, Ortiz Muñoz D, Arango-Hoyos G-P. Effect of a virtual reality program to improve trunk stability in Paralympic shot put and javelin throwers. A case study. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2022 Dec 10;4(2):34-49. doi: https://doi.org/10.46634/riics.135
          11. Bernal Botero LF, Arias-Ramírez YZ, Pineda Graciano CM. Tuberous Sclerosis Complex: neuropsychological Profile and intervention proposal. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2020 Oct 12;2(1):98-115. doi: https://doi.org/10.46634/riics.46
          12. Adamas Uribe EA. Physical Activity: relevance in phonoaudiological intervention. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2019 Dec 31;1(2):38-51. doi: https://doi.org/10.46634/riics.21
          13. Calvache-Mora CA. Vocal parameters to determine severity of voice disorders. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2020 Dec 28;2(2):14-30. doi: https://doi.org/10.46634/riics.39
          14. Hamari J. Gamification. In: Ritzer G, editor. The Blackwell Encyclopedia of Sociology [Internet]. John Wiley & Sons, Ltd; 2023. doi: https://doi.org/10.1002/9781405165518.wbeos1321
          15. Bennett S, Rodger S, Fitzgerald C, Gibson L. Simulation in Occupational Therapy Curricula: A literature review. Aust Occup Ther J [Internet]. 2017;64(4):314-27. doi: https://doi.org/10.1111/1440-1630.12372
          16. Bracq M-S, Michinov E, Jannin P. Virtual Reality Simulation in Nontechnical Skills Training for Healthcare Professionals A Systematic Review. Simul Healthc [Internet]. 2019;14(3):188-94. doi: https://doi.org/10.1097/SIH.0000000000000347
          17. Rodrigues J, Coelho T, Menezes P, Restivo MT. Immersive Environments for Occupational Therapy: Pilot Study. Information [Internet]. 2020 Aug 21;11(9):1-12. doi: https://doi.org/10.3390/info11090405
          18. Lim I, Cha B, Cho DR, Park EY, Lee KS, Kim MY. Safety and Potential Usability of Immersive Virtual Reality for Brain Rehabilitation: A Pilot Study. Games Health J [Internet]. 2023;12(1):34-41. doi: https://doi.org/10.1089/g4h.2022.0048
          19. Hwang N-K, Shim S-H. Use of Virtual Reality Technology to Support the Home Modification Process: A Scoping Review. Int. J Environ Res Public Health [Internet]. 2021 Oct 21;18:1-17. doi: https://doi.org/10.3390/ijerph182111096
          20. Fan T, Wang X, Song X, Zhao G, Zhang Z. Research Status and Emerging Trends in Virtual Reality Rehabilitation: Bibliometric and Knowledge Graph Study. JMIR Serious Games [Internet]. 2023;11:1-16. doi: https://doi.org/10.2196/41091
          21. Sosa GD, Franco H. Evaluation of user experience of a computer vision-based stabilometry system in Multiple Sclerosis. Revista de Investigación e Innovación en Ciencias de la Salud [Internet]. 2019 Apr 8;1(1):7-16. doi: https://doi.org/10.46634/riics.8
          22. Cheng K, Gallistel CR. Testing the geometric power of an animal’s spatial representation. In: Roitblat HL, Bever TG, Terrace HS, editors. Animal cognition: Proceedings of the Harry Frank Guggenheim conference. Hillsdale: Erlbaum; 1984. p. 409-424.
          23. Cheng K. A purely geometric module in the rat’s spatial representation. Cognition [Internet]. 1986;23(2):149-78. doi: https://doi.org/10.1016/0010-0277(86)90041-7
          24. Gallistel CR. The Organization of Learning. Cambridge: MIT Press; 1990. 648 p.
          25. Cheng K, Huttenlocher J, Newcombe NS. 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychon Bull Rev [Internet]. 2013;20(6):1033-54. doi: https://doi.org/10.3758/s13423-013-0416-1
          26. Vallortigara G. Animals as natural geometers. In: Tommasi L, Nadel L, Peterson M, editors. Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain and Behavior. Cambridge: MIT Press; 2009. p. 83-104.
          27. Tommasi L, Chiandetti C, Pecchia T, Sovrano VA, Vallortigara G. From natural geometry to spatial cognition. Neurosci Biobehav Rev [Internet]. 2012;36(2):799-824. doi: https://doi.org/10.1016/j.neubiorev.2011.12.007
          28. McGregor A, Horne MR, Esber GR, Pearce JM. Absence of Overshadowing Between a Landmark and Geometric Cues in a Distinctively Shaped Environment: A Test of Miller and Shettleworth (2007). J Exp Psychol Anim Behav Process [Internet]. 2009;35(3):357-70. doi: https://doi.org/10.1037/a0014536
          29. Hermer L, Spelke ES. A geometric process for spatial reorientation in young children. Nature [Internet]. 1994;370(6484):57-9. doi: https://doi.org/10.1038/370057a0
          30. Fodor JA. “The Modularity of Mind: An Essay on Faculty Psychology”. In J. Adler & L. Rips (Eds.), Reasoning: Studies of Human Inference and its Foundations. Cambridge: Cambridge University Press. [Internet]. 2008 May 5;878–914. doi: http://dx.doi.org/10.1017/cbo9780511814273.046
          31. Vallortigara G, Zanforlin M, Pasti G. Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus). J Comp Psychol [Internet]. 1990;104(3):248-54. doi: https://doi.org/10.1037/0735-7036.104.3.248
          32. Lee SA, Shusterman A, Spelke ES. Reorientation and landmark-guided search by young children: evidence for two systems. Psychol Sci [Internet]. 2006;17(7):577-82. doi: https://doi.org/10.1111/j.1467-9280.2006.01747.x
          33. Pearce JM. The 36th Sir Frederick Bartlett Lecture: An associative analysis of spatial learning. Quart J Exp Psychol [Internet]. 2009;62(9):1665-84. doi: https://doi.org/10.1080/17470210902805589
          34. Horne MR, Pearce JM. Potentiation and overshadowing between landmarks and environmental geometric cues. Learn Behav [Internet]. 2011;39(4):371-82. doi: https://doi.org/10.3758/s13420-011-0032-8
          35. Lee SA, Austen JM, Sovrano VA, Vallortigara GV, McGregor A, Lever C. Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Nature / Sci Rep [Internet] 2020;10:1-9. doi: https://doi.org/10.1038/s41598-020-64366-w
          36. Austen JM, McGregor A. Revaluation of geometric cues reduces landmark discrimination via within-compound associations. Learn Behav [Internet]. 2014;42(4):330-36. doi: http://doi.org/10.3758/s13420-014-0150-1
          37. Horne MR, Pearce JM. Between-cue associations influence searching for a hidden goal in an environment with a distinctive shape. J Exp Psychol Anim Behav Process [Internet]. 2009;35(1): 99-107. doi: https://doi.org/10.1037/0097-7403.35.1.99
          38. Rhodes SEV, Creighton G, Killcross AS. Good M, Honey RC. Integration of geometric with luminance information in the rat: Evidence from within-compound associations. J Exp Psychol Anim Behav Process [Internet]. 2009;35(1):92-8. doi: https://doi.org/10.1037/0097-7403.35.1.92
          39. Pearce JM, Graham M, Good MA, Jones PM, McGregor A. Potentiation, overshadowing, and blocking of spatial learning based on-the shape of the environment. J Exp Psychol Anim Behav Process [Internet]. 2006;32(3):201-14. doi: https://doi.org/10.1037/0097-7403.32.3.201
          40. Horne MR, Pearce JM. Potentiation and overshadowing between landmarks and environmental geometric cues. Learn. Behav [Internet]. 2011;39(4):371-82. doi: https://doi.org/10.3758/s13420-011-0032-8
          41. Austen JM, Kosaki Y, McGregor A. Within-compound associations explain potentiation and failure to overshadow learning based on geometry by discrete landmarks. J Exp Psychol Anim Behav Process [Internet]. 2013;39(3):259-72. doi: https://doi.org/10.1037/a0032525
          42. Cole MR, Gibson L, Pollack A, Yates L. Potentiation and overshadowing of shape by wall color in a kite-shaped maze using rats in a foraging task. Learn Motiv [Internet]. 2011;42(2):99-112. doi: https://doi.org/10.1016/j.lmot.2010.11.001
          43. Kelly DM. Features enhance the encoding of geometry. An Cogn [Internet]. 2010;13:453-62. doi: https://doi.org/10.1007/s10071-009-0296-y
          44. Basdekidou C. Bird Migration with Visual Avian Navigation & Nest Nidification: The Spatial Linear Geometries Georeferencing Functionality. OR [Internet]. 2022;17(4):30-50. doi: https://doi.org/10.9734/or/2022/v17i4371
          45. Wilmut K, Barnett AL. When an object appears unexpectedly: Anticipation movement and object circumvention in individuals with and without Developmental Coordination Disorder. Exp Brain Res [Internet]. 2017;235:1531-40. doi: https://doi.org/10.1007/s00221-017-4901-z
          46. Basdekidou C. Visual Contribution to Motor Skill DCD Disorders & Walking Physiology Using Spatial Cognition and Linear Geometries as Landmark Coordination Cues. OR [Internet]. 2023;18(1):10-37. doi: https://doi.org/10.9734/or/2023/v18i1375
          47. Ankowski AA, Thom EE, Sandhofer CM, Blaisdell AP. Spatial Language and Children’s Spatial Landmark Use. Child Dev [Internet]. 2012 Jul 5;2012:1-15. doi: https://doi.org/10.1155/2012/427364
          48. Eaves DL, Riach M, Holmes PS, Wright DJ. Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Neurosci [Internet]. 2016;10:1-10. doi: https://doi.org/10.3389/fnins.2016.00514
          49. Słowiński P, Baldemir H, Wood G, Alizadehkhaiyat O, Coyles G, Vine S, et al. Gaze training supports the self-organization of movement coordination in children with developmental coordination disorder. Sci Rep [Internet]. 2019 Feb 8;9(1):1-11. doi: https://doi.org/10.1038/s41598-018-38204-z
          50. Scott M, Wood G, Holmes P, Marshall B, Williams J, Wright D. Imagine That! Mental Training for Children with Developmental Coordination Disorder. Front. Young Minds [Internet]. 2021;9:1-8. doi: https://doi.org/10.3389/frym.2021.642053
          51. Parr JVV, Foster RJ, Wood G, Hollands MA. Children With Developmental Coordination Disorder Exhibit Greater Stepping Error Despite Similar Gaze Patterns and State Anxiety Levels to Their Typically Developing Peers. Front Hum Neurosci [Internet]. 2020 Jul 28;14:1-11. doi: https://doi.org/10.3389/fnhum.2020.00303
          52. Marshall B, Wright DJ, Holmes PS, Williams J, Wood G. Combined action observation and motor imagery facilitates visuomotor adaptation in children with developmental coordination disorder. Res Dev Disabil [Internet]. 2020;98:103570. doi: https://doi.org/10.1016/j.ridd.2019.103570
          53. Straker LM, Campbell AC, Jensen LM, Metcalf DR, Smith AJ, Abbott RA, et al. Rationale, design, and methods for a randomized and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health [Internet]. 2011;11:1-12. doi: https://doi.org/10.1186/1471-2458-11-654
          54. Wilmut K, Williams J, Purcell C. Editorial: Current Perspectives on Developmental Coordination Disorder (DCD). Front Hum Neurosci [Internet]. 2022;16:1-3. doi: https://doi.org/10.3389/fnhum.2022.837548
          55. Pinero-Pinto E, Romero-Galisteo RP, Sánchez-González MC, Escobio-Prieto I, Luque-Moreno C, Palomo-Carrión R. Motor Skills and Visual Deficits in Developmental Coordination Disorder: A Narrative Review. J Clin Med [Internet]. 2022 Dec 15;11(24):1-13. doi: https://doi.org/10.3390/jcm11247447
          56. EbrahimiSani S, Sohrabi M, Taheri H, Agdasi MT, Amiri S. Effects of virtual reality training intervention on predictive motor control of children with DCD – A randomized controlled trial. Res Dev Disabil [Internet]. 2020;107:103768. doi: https://doi.org/10.1016/j.ridd.2020.103768
          57. Wilson PH, Adams IL, Caeyenberghs K, Thomas P, Smits-Engelsman B, Steenbergen B. Motor imagery training enhances motor skill in children with DCD: a replication study. Res Dev Disabil [Internet]. 2016;57:54-62. doi: https://doi.org/10.1016/j.ridd.2016.06.014
          58. Grohs MN, Hilderley A, Kirton A. The therapeutic potential of non-invasive neurostimulation for motor skill learning in children with neurodevelopmental disorders. Curr Dev Disord Rep [Internet]. 2019;6:19-28. doi: https://doi.org/10.1007/s40474-019-0155-8
          59. Grohs MN, Craig BT, Kirton A., Dewey D. Effects of Transcranial Direct Current Stimulation on Motor Function in Children 8-12 Years With Developmental Coordination Disorder: A Randomized Controlled Trial. Front Hum Neurosci [Internet]. 2020;14:1-11. doi: https://doi.org/10.3389/fnhum.2020.608131
          60. Pereira S, Bustamante A, Santos C, Hedeker D, Tani G, Garganta R, et al. Biological and environmental influences on motor coordination in Peruvian children and adolescents. Sci Rep [Internet]. 2021;11(1):1-11. doi: https://doi.org/10.1038/s41598-021-95075-7
          61. Guardia G, Marsden KA, Vallejo A, Jones DL, Chadwick DR. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci Total Environ [Internet]. 2018;624:1202-12. doi: https://doi.org/10.1016/j.scitotenv.2017.12.250
          62. Shegeva S, Goel A. The Role of Symmetry in Geometric Intelligence. Baltic J Modern Computing [Internet]. 2021;9(3):260-75. doi: https://doi.org/10.22364/bjmc.2021.9.3.02
          63. Kinateder M, Cooper EA. Assessing Effects of Reduced Vision on Spatial Orientation Ability Using Virtual Reality. Baltic J Modern Computing [Internet]. 2021;9(3):243-59. doi: https://doi.org/10.22364/bjmc.2021.9.3.01
          64. Glöckner F, Schuck NW, Li S-C. Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Sci Rep [Internet]. 2021;11:1-16. doi: https://doi.org/10.1038/s41598-021-94530-9
          65. Waller D, Lippa Y. Landmarks as beacons and associative cues: Their role in route learning. Mem Cognit [Internet]. 2007;35(5):910-24. doi: https://doi.org/10.3758/BF03193465
          66. Amalric M, Wang L, Pica P, Figueira S, Sigman M, Dehaene S. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers. PLoS Comput Biol [Internet]. 2017;13(1):1-31. doi: https://doi.org/10.1371/journal.pcbi.1005273
          67. Richardson AM. Nonparametric Statistics: A Step‐by‐Step Approach. International Statistical Review [Internet]. 2015 Apr;83(1):163–4. doi: http://dx.doi.org/10.1111/insr.12095_3
          68. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. Series B Methodol [Internet]. 1995;57(1):289-300. doi: https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
          69. Le Du K, Septans A-L, Maloisel F, Vanquaethem H, Schmitt A, Le Goff M, et al. A New Option for Pain Prevention Using a Therapeutic Virtual Reality Solution for Bone Marrow Biopsy (REVEH Trial): Open-Label, Randomized, Multicenter, Phase 3 Study. Journal of Medical Internet Research [Internet]. 2023 Feb 15;25:e38619. doi: https://doi.org/10.2196/38619
          70. APA/American Psychiatric Association. Diagnostic and statistical manual of mental disorders [Internet]. 5th ed. Arlington: American Psychiatric Association; 2022. 1142 p. doi: https://doi.org/10.1176/appi.books.9780890425787
          71. Styliadis AD. E-Learning Documentation of Historical Living Systems with 3-D Modeling Functionality. Informatica [Internet]. 2007;18(3):419-46. doi: https://doi.org/10.15388/Informatica.2007.186
          72. Styliadis AD, Patias,PG, Zestas NC. 3-D Computer Modeling with Intra-Component, Geometric, Quality and Topological Constraints. Informatica [Internet]. 2003;14(3):375-92. doi: https://doi.org/10.15388/Informatica.2003.028
          73. Krauze L, Ceple I, Skilters J, Delesa-Velina M, Pinna B, Krumina G. Gaze Parameters in the Analysis of Ambiguous Geometric Shapes. IPerception [Internet]. 2021 Mar 12;12(2). doi: https://doi.org/10.1177/2041669521998392
          74. Parr JVV, Foster RJ, Wood G, Hollands MA. Children With Developmental Coordination Disorder Exhibit Greater Stepping Error Despite Similar Gaze Patterns and State Anxiety Levels to Their Typically Developing Peers. Front Hum Neurosci [Internet]. 2020;14:1-11. doi: https://doi.org/10.3389/fnhum.2020.00303
          75. Słowiński P, Baldemir H, Wood G, Alizadehkhaiyat O, Coyles G, Vine S, et al. Gaze training supports self-organization of movement coordination in children with developmental coordination disorder. Sci Rep [Internet]. 2019;9:1-11. doi: https://doi.org/10.1038/s41598-018-38204-z
          76. Gallistel CR. The Organization of Learning. Journal of Cognitive Neuroscience [Internet]. 1991;3(4):382–4. doi: http://dx.doi.org/10.1162/jocn.1991.3.4.382
          77. Gallistel CR. Representations in animal cognition: An introduction. Cognition [Internet]. 1990;37(1-2):1-22. doi: https://doi.org/10.1016/0010-0277(90)90016-D
          78. Gallistel CR. Learning and Representation (2008). In: Menzel R, editor. Learning and memory: A comprehensive reference. Volume 1. Learning theory and behaviour [Internet]. New York: Elsevier; 2008. p. 227-42. doi: https://doi.org/10.1016/B978-012370509-9.00082-6
          79. Klatzky RL, Loomis JM, Beall AC, Chance SS, Golledge RG. Spatial Updating of Self-Position and Orientation during Real, Imagined, and Virtual Locomotion. Psychol Sci [Internet]. 1998;9(4):293-98. doi: https://doi.org/10.1111/1467-9280.00058
          Sistema OJS 3.4.0.7 - Metabiblioteca |