Skip to main navigation menu Skip to main content Skip to site footer

Feasibility, Safety, and Enjoyment during Wii Balance Board Exergame Training among Individuals with Sub-acute Stroke

Viabilidad, seguridad y diversión durante el entrenamiento con Wii Balance Board Exergame en personas con ictus subagudo



Open | Download


Section
Research Article

How to Cite
1.
Feasibility, Safety, and Enjoyment during Wii Balance Board Exergame Training among Individuals with Sub-acute Stroke. Rev. Investig. Innov. Cienc. Salud [Internet]. 2024 Oct. 3 [cited 2024 Dec. 4];:In press. Available from: https://riics.info/index.php/RCMC/article/view/332

Dimensions
PlumX

Sayan Pratihar,

1 SRM College of Physiotherapy; Faculty of Medicine & Health Sciences; SRM Institute of Science and Technology; Chennai; India.


Shanmuga Priya R. P.,

1 SRM College of Physiotherapy; Faculty of Medicine & Health Sciences; SRM Institute of Science and Technology; Chennai; India.


Introduction. Nintendo® Wii is a non-immersive virtual reality platform that works integrated with the Wii Balance Board as a biofeedback system for balance rehabilitation among post-stroke patients.

Objective. Primary objective was to evaluate the feasibility of employing Wii Balance Board training as a standalone treatment approach in clinical practice for sub-acute stroke patients. The secondary objective was to assess the enjoyment status during Wii Balance Board training and to calculate effect size for definitive study.

Method. The study design was pilot randomized control trial. We recruited 20 sub-acute stroke patients using a block randomization technique. The participants in the experimental group received Wii Balance Board training for 12 sessions up to 2 weeks. The control group participants received standard physiotherapy treatments for standing balance for 12 sessions until 2 weeks. Outcome measures were clinical-log documentation for feasibility testing, Exergame Enjoyment Questionnaire, mini-BESTest, and FIMs.

Results. The study’s enrollment and retention rate was respectively 80% (n = 20) and 70% in each group (n = 7). The incidence rate of adverse events from Wii Fit training was reported to be 40% (n = 4), along with a moderate enjoyment rate (mean±sd=50.10 ± 14.69; n = 10). The experimental intervention did not offer significant benefits over control intervention (p = 0.539, 0.622; Cohen’s d = -0.280, -0.224; 95% CI: -1.158 to 0.605, -1.101 to 0.658).

Conclusion. The Wii Balance Board-based exergames training can be considered a feasible and safe balance training approach among sub-acute stroke patients. However, exergames cannot replace standard care balance rehabilitation due to poor efficacy in short term.


Article visits 222 | PDF visits


  1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke [Internet]. 2022;17(1):18-29. doi: https://doi.org/10.1177/17474930211065917
  2. Jones SP, Baqai K, Clegg A, Georgiou R, Harris C, Holland E-J, et al. Stroke in India: A systematic review of the incidence, prevalence, and case fatality. Int J Stroke [Internet]. 2022;17(2):132-40. doi: https://doi.org/10.1177/17474930211027834
  3. Kamphuis JF, de Kam D, Geurts ACH, Weerdesteyn V. Is weight-bearing asymmetry associated with postural instability after stroke? A systematic review. Stroke Res Treat [Internet]. 2013;2013:692137. doi: https://doi.org/10.1155/2013/692137
  4. Szopa A, Domagalska-Szopa M, Lasek-Bal A, Żak A. The link between weight shift asymmetry and gait disturbances in chronic hemiparetic stroke patients. Clin Interv Aging [Internet]. 2017;12:2055-62. doi: https://doi.org/10.2147/CIA.S144795
  5. Whiteneck GG. Measuring what matters: Key rehabilitation outcomes. Arch Phys Med Rehabil [Internet]. 1994;75:1073-6. doi: https://doi.org/10.1016/0003-9993(94)90080-9
  6. Noh H-J, Lee S-H, Bang D-H. Three-Dimensional Balance Training Using Visual Feedback on Balance and Walking Ability in Subacute Stroke Patients: A Single-Blinded Randomized Controlled Pilot Trial. J Stroke Cerebrovasc Dis [Internet]. 2019;28(4):994-1000. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.12.016
  7. Bovim LPV, Valved L, Bleikli B, Geitung AB, Soleim H, Bogen B. Theoretical Rationale for Design of Tasks in a Virtual Reality-Based Exergame for Rehabilitation Purposes. Front Aging Neurosci [Internet]. 2021;13:734223. doi: https://doi.org/10.3389/fnagi.2021.734223
  8. Choi D, Choi W, Lee S. Influence of Nintendo Wii Fit Balance Game on Visual Perception, Postural Balance, and Walking in Stroke Survivors: A Pilot Randomized Clinical Trial. Games Health J [Internet]. 2018;7(6):377-84. doi: https://doi.org/10.1089/g4h.2017.0126
  9. Hung J-W, Chou C-X, Chang H-F, Wu W-C, Hsieh Y-W, Chen P-C, et al. Cognitive effects of weight-shifting controlled exergames in patients with chronic stroke: a pilot randomized comparison trial. Eur J Phys Rehabil Med [Internet]. 2017;53(5):694-702. doi: https://doi.org/10.23736/S1973-9087.17.04516-6
  10. Montoro-Cárdenas D, Cortés-Pérez I, Ibancos-Losada MR, Zagalaz-Anula N, Obrero-Gaitán E, Osuna-Pérez MC. Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Int J Environ Res Public Health [Internet]. 2022;19:1-19. doi: https://doi.org/10.3390/ijerph191912343
  11. Rohof B, Betsch M, Rath B, Tingart M, Quack V. The Nintendo® Wii Fit Balance Board can be used as a portable and low-cost posturography system with good agreement compared to established systems. Eur J Med Res [Internet]. 2020;25(1):44. doi: https://doi.org/10.1186/s40001-020-00445-y
  12. Lee MM, Lee KJ, Song CH. Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke. Med Sci Monit [Internet]. 2018;24:2590-8. doi: https://doi.org/10.12659/MSM.906451
  13. Utkan Karasu A, Balevi Batur E, Kaymak Karataş G. Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study. J Rehabil Med [Internet]. 2018;50(5):406-12. doi: https://doi.org/10.2340/16501977-2331
  14. Ghazavi Dozin SM, Mohammad Rahimi N, Aminzadeh R. Wii Fit-Based Biofeedback Rehabilitation Among Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Biol Res Nurs [Internet]. 2024;26(1):5-20. doi: https://doi.org/10.1177/10998004231180316
  15. Jeon M-J, Moon J-H, Cho H. Effects of virtual reality combined with balance training on upper limb function, balance, and activities of daily living in persons with acute stroke: a preliminary study. PTRS [Internet]. 2019;8:187-93. doi: https://doi.org/10.14474/ptrs.2019.8.4.187
  16. Morone G, Tramontano M, Iosa M, Shofany J, Iemma A, Musicco M, et al. The Efficacy of Balance Training with Video Game-Based Therapy in Subacute Stroke Patients: A Randomized Controlled Trial. BioMed Res Int [Internet]. 2014;2014:1-6. doi: https://doi.org/10.1155/2014/580861
  17. Anwar N, Karimi H, Ahmad A, Gilani SA, Khalid K, Aslam AS, et al. Virtual Reality Training Using Nintendo Wii Games for Patients With Stroke: Randomized Controlled Trial. JMIR Serious Games [Internet]. 2022;10(2):e29830. doi: https://doi.org/10.2196/29830
  18. Bian M, Shen Y, Huang Y, Wu L, Wang Y, He S, et al. A non-immersive virtual reality-based intervention to enhance lower-extremity motor function and gait in patients with subacute cerebral infarction: A pilot randomized controlled trial with 1-year follow-up. Front Neurol [Internet]. 2022;13:985700. doi: https://doi.org/10.3389/fneur.2022.985700
  19. Pintado-Izquierdo S, Cano-de-la-Cuerda R, Ortiz-Gutiérrez RM. Video Game-Based Therapy on Balance and Gait of Patients with Stroke: A Systematic Review. Appl Sci [Internet]. 2020;10(18):1-33. doi: https://doi.org/10.3390/app10186426
  20. Saeedi S, Ghazisaeedi M, Rezayi S. Applying Game-Based Approaches for Physical Rehabilitation of Poststroke Patients: A Systematic Review. J Healthc Eng [Internet]. 2021;2021:1-27. doi: https://doi.org/10.1155/2021/9928509
  21. Domínguez-Téllez P, Moral-Muñoz JA, Casado-Fernández E, Salazar-Couso A, Lucena-Antón D. Efectos de la realidad virtual sobre el equilibrio y la marcha en el ictus: revisión sistemática y metaanálisis. Rev Neurol [Internet]. 2019;69:223-34. doi: https://doi.org/10.33588/rn.6906.2019063
  22. Sana V, Ghous M, Kashif M, Albalwi A, Muneer R, Zia M. Effects of vestibular rehabilitation therapy versus virtual reality on balance, dizziness, and gait in patients with subacute stroke: A randomized controlled trial. Medicine (Baltimore) [Internet]. 2023;102(24):e33203. doi: https://doi.org/10.1097/MD.0000000000033203
  23. Ruff J, Wang TL, Quatman-Yates CC, Phieffer LS, Quatman CE. Commercially available gaming systems as clinical assessment tools to improve value in the orthopaedic setting: A systematic review. Injury [Internet]. 2015;46(2):178-83. doi: https://doi.org/10.1016/j.injury.2014.08.047
  24. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ [Internet]. 2016;355:i5239. doi: https://doi.org/10.1136/bmj.i5239
  25. Ciorap R, Andritoi D, Luca C, Corciova C. Monitoring of Cardiovascular Parameters During Rehabilitation After Stroke Event. In: Vlad S, Roman NM, editors. 6th International Conference on Advancements of Medicine and Health Care through Technology [Internet]. 2018 Oct 17-20; Cluj-Napoca, Romania. Springer Singapore; 2019. p. 103-7. doi: https://doi.org/10.1007/978-981-13-6207-1_17
  26. Fitzgerald A, Huang S, Sposato K, Wang D, Claypool M, Agu E. The Exergame Enjoyment Questionnaire (EEQ): An Instrument for Measuring Exergame Enjoyment. In Bui TX, editor. Proceedings of the 53rd Annual Hawaii International Conference on System Sciences [Internet]. 2020 Jan 7-10; Maui, Hawaii. HICSS; 2020. p. 3397-406. doi: https://doi.org/10.24251/HICSS.2020.416
  27. Chinsongkram B, Chaikeeree N, Saengsirisuwan V, Viriyatharakij N, Horak FB, Boonsinsukh R. Reliability and Validity of the Balance Evaluation Systems Test (BESTest) in People With Subacute Stroke. Phys Ther [Internet]. 2014;94(11):1632–43. doi: https://doi.org/10.2522/ptj.20130558
  28. Segal ME, Schall RR. Determining functional/health status and its relation to disability in stroke survivors. Stroke [Internet]. 1994;25(12):2391-7. doi: https://doi.org/10.1161/01.STR.25.12.2391
  29. National Center for Complementary and Integrative Health (NIH) [Internet]. Bethesda: NIH; c2024. Pilot Studies: Common Uses and Misuses; n.d. [cited 2024 Jul 16]; [about 8 screens]. Available from: https://www.nccih.nih.gov/grants/pilot-studies-common-uses-and-misuses
  30. OpenAI. ChatGPT (Version 3.0) [Large language model]. 2023.
  31. Locke DEC, Chandler Greenaway M, Duncan N, Fields JA, Cuc AV, Hoffman Snyder C, et al. A patient-centered analysis of enrollment and retention in a randomized behavioral trial of two cognitive rehabilitation interventions for Mild Cognitive Impairment. J Prev Alzheimers Dis [Internet]. 2014;1(3):143-50. doi: https://doi.org/10.14283/jpad.2014.27
  32. Randriambelonoro M, Perrin C, Blocquet A, Kozak D, Toyas Fernandez J, Marfaing T, et al. Hospital-to-Home Transition for Older Patients: Using Serious Games to Improve the Motivation for Rehabilitation – a Qualitative Study. Journal of population ageing [Internet]. 2020;13:187-205. doi: https://doi.org/10.1007/s12062-020-09274-7
  33. Klompstra L, Jaarsma T, Olsson M, Bayes-Genis A, Lupon J, Gonzales B, et al. Health care professionals expectations on mobile exergaming to decrease sedentary time in patients with heart failure. European Journal of Cardiovascular Nursing [Internet]. 2024;23(Suppl 1):zvae098.121. doi: https://doi.org/10.1093/eurjcn/zvae098.121
  34. Jenkins L, Gonzaga S, Jedlanek E, Kim G, Raghavan P. Addressing the Operational Challenges for Outpatient Stroke Rehabilitation. Am J Phys Med Rehabil [Internet]. 2023;102(2S):S61-7. doi: https://doi.org/10.1097/PHM.0000000000002145
  35. Chavda K, Prakash V. Transport use limitations and its association with social participation among patients with stroke living in rural India. Disabil Rehabil [Internet]. 2024;46(17):3980-4. doi: https://doi.org/10.1080/09638288.2023.2260740
  36. O’Callaghan G, Fahy M, O’Meara S, Chawke M, Waldron E, Corry M, et al. Transitioning to home and beyond following stroke: a prospective cohort study of outcomes and needs. BMC Health Serv Res [Internet]. 2024;24(1):449. doi: https://doi.org/10.1186/s12913-024-10820-8
  37. Lourido C, Waghoo Z, Wazir HK, Bhagat N, Kapila V. Using Capability Maps Tailored to Arm Range of Motion in VR Exergames for Rehabilitation. arXiv. 2404.12504 [Internet]. 2024;1. doi: https://doi.org/10.48550/ARXIV.2404.12504
  38. Vadas D, Prest K, Turk A, Tierney S. Understanding the facilitators and barriers of stroke survivors’ adherence to recovery-oriented self-practice: a thematic synthesis. Disabil Rehabil [Internet]. 2022;44(22):6608-19. doi: https://doi.org/10.1080/09638288.2021.1968512
  39. Large AM, Bediou B, Cekic S, Hart Y, Bavelier D, Green CS. Cognitive and Behavioral Correlates of Achievement in a Complex Multi-Player Video Game. Media Commun 2019;7:198–212. doi: https://doi.org/10.17645/mac.v7i4.2314
  40. Xu L, Yu T, Gao R, Zhang X, Pang Y, Yu T, et al. Maintenance effects of a gamification intervention on motivation and physical activity in patients with coronary heart disease: intermediate results of a randomized controlled trial. European Heart Journal [Internet]. 2022;43(Suppl 2):ehac544.2440. doi: https://doi.org/10.1093/eurheartj/ehac544.2440
  41. Rotstein MS, Zimmerman‐Brenner S, Davidovitch S, Ben‐Haim Y, Koryto Y, Sion R, et al. Gamified Closed‐Loop Intervention Enhances Tic Suppression in Children: A Randomized Trial. Mov Disord [Internet]. 2024;39(8):1310-22. doi: https://doi.org/10.1002/mds.29875
  42. Draghi TTG, Smits-Engelsman B, Godoi-Jacomassi D, Cavalcante Neto JL, Jelsma D, Tudella E. Short- and Long-Term Changes in Balance After Active Video Game Training in Children With and Without Developmental Coordination Disorder: A Randomized Controlled Trial. Motor Control [Internet]. 2024;28(2):174-92. doi: https://doi.org/10.1123/mc.2023-0070
  43. Fotopoulos D, Ladakis I, Kilintzis V, Chytas A, Koutsiana E, Loizidis T, et al. Gamifying rehabilitation: MILORD platform as an upper limb motion rehabilitation service. Front Comput Sci [Internet]. 2022;4:932342. doi: https://doi.org/10.3389/fcomp.2022.932342
  44. Hsiao H-Y, Gray VL, Borrelli J, Rogers MW. Biomechanical control of paretic lower limb during imposed weight transfer in individuals post-stroke. J Neuroeng Rehabil [Internet]. 2020;17(1):140. doi: https://doi.org/10.1186/s12984-020-00768-1
  45. Barbanchon C, Mouraux D, Baudry S. Repeated exposure to virtual reality decreases reliance on visual inputs for balance control in healthy adults. Human movement science [Internet]. 2024;96:103236. doi: https://doi.org/10.1016/j.humov.2024.103236
  46. Tsurayya G, Duta TF, Naufal MA, Alina M, Isitua CC, Ohanu EC. Acceptance, safety, and impact on quality of life of exergame for elderly patients with neurodegenerative diseases: A systematic review and meta-analysis. Narra X [Internet]. 2023;1(3):1-12. doi: https://doi.org/10.52225/narrax.v1i3.94
  47. Molhemi F, Monjezi S, Mehravar M, Shaterzadeh-Yazdi M-J, Salehi R, Hesam S, et al. Effects of Virtual Reality vs Conventional Balance Training on Balance and Falls in People With Multiple Sclerosis: A Randomized Controlled Trial. Arch Phys Med Rehabil [Internet]. 2021;102(2):290-9. doi: https://doi.org/10.1016/j.apmr.2020.09.395
  48. Begde A, Alqurafi A, Pain MTG, Blenkinsop G, Wilcockson T, Hogervorst E. The Effectiveness of Home-based Exergames Training on Cognition and Balance in Older Adults: A Comparative Quasi-Randomized Study of Two Exergame Interventions. Innov Aging [Internet]. 2023;7(8):igad102. doi: https://doi.org/10.1093/geroni/igad102
  49. Norouzkhani N, Hamednia M, Aalaei S. Application of Mobile-Based Games in The Rehabilitation of Stroke Survivors. Simulation & Gaming [Internet]. 2023;54(2):184-208. doi: https://doi.org/10.1177/10468781231158048
  50. Ajani OS, Mallipeddi R. Pareto-based Dynamic Difficulty Adjustment of a competitive exergame for arm rehabilitation. International Journal of Human-Computer Studies [Internet]. 2023;178:103100. doi: https://doi.org/10.1016/j.ijhcs.2023.103100
  51. Huber SK, Knols RH, Held JPO, Betschart M, De Bruin ED. PEMOCS: Evaluating the effects of a concept-guided, PErsonalized, MOtor-Cognitive exergame training on cognitive functions and gait in chronic Stroke – study protocol for a randomized controlled trial. Research Square [preprint]. 2024. doi: https://doi.org/10.21203/rs.3.rs-3868318/v1
  52. Zahid H, Jamil A, Khalid F. Effects of relaxing music therapy along with task-oriented training of lower limb on balance and functional independence in patients with chronic stroke: a randomized clinical trial. Pakistan Journal of Rehabilitation [Internet]. 2024;13(1):138-45. doi: https://doi.org/10.36283/pjr.zu.13.1/017
  53. Zhao C, Zhao C, Zhao M, Wang L, Guo J, Zhang L, et al. Effect of Exergame Training on Working Memory and Executive Function in Older Adults. Sustainability [Internet]. 2022;14(17):1-11. doi: https://doi.org/10.3390/su141710631
  54. Piccinini G, Imbimbo I, Ricciardi D, Coraci D, Santilli C, Lo Monaco MR, et al. The impact of cognitive reserve on the effectiveness of balance rehabilitation in Parkinson’s disease. Eur J Phys Rehabil Med [Internet]. 2018;54(4):554-9. doi: https://doi.org/10.23736/S1973-9087.17.04837-7
  55. Rogers C, Shamley D, Amosun S. Older Adults’ Experience of an Exergaming Intervention to Improve Balance and Prevent Falls: A Nested Explanatory Qualitative Study. Appl Sci [Internet]. 2021;11(24):1-17. doi: https://doi.org/10.3390/app112411678
Sistema OJS 3.4.0.7 - Metabiblioteca |