Effect of a virtual reality program to improve trunk stability in Paralympic shot put and javelin throwers. A case study

Efecto de un programa de realidad virtual para mejorar la estabilidad de tronco en lanzadores de bala y jabalina paralímpicos. Un estudio de casos

Abstract


Introduction: Paralympic sport originated as part of rehabilitation processes for people with disabilities. During the execution of Paralympic disciplines, motor control in the trunk region and especially in the abdomen is of great importance to prevent injuries and improve the registration of the sports record. There are many tools used by sports coaches to improve muscle strength and therefore trunk stability to reduce the risk in the sports field. However, research on the use of virtual reality along with stabilometry platforms for the training of Paralympic athletes with physical injuries are scarce.


Objective: To establish the effect of a trunk training program supported by virtual reality in high performance Paralympic athletes, shot put and javelin throwers with physical injuries who compete in throwing frames.


Materials and method: The research was designed as an intrasubject quasi-experimental study. Five high-performance Paralympic athletes with physical disabilities were evaluated. A virtual reality software that includes patterns and playful games adjustable in time and intensity and a dynamic standing platform were used as part of the intervention equipment, adjustable to the patient, which allows reeducating balance, proprioception, strengthening, and achieving trunk control. The variables of analysis were the level of anteroposterior and lateral displacement of the trunk and changes in the volume of action. An initial evaluation, an intervention that lasted six weeks, and a final evaluation were carried out.


Results: In the initial evaluations of all athletes, a tendency towards posterior displacement was observed. In the final evaluation, the displacement ranges increase in almost all subjects except for subject 5, which showed values that remain almost stable in both the initial and final evaluations. The difference in displacement between the initial and final test on average of the participants was 6.26 degrees.


Conclusions: the positive results of trunk training supported by virtual reality for the participants constitute a contribution to the knowledge on the subject and open the possibility of including this technology in training protocols in Paralympic sports.


Downloads

Download data is not yet available.

Citado por


Authors


Luz Edith Perez-Trejos
Lessby Gómez Salazar
Daniela Ortiz Muñoz
Gloria-Patricia Arango-Hoyos

References


Ruiz S. Deporte paralímpico: una mirada hacia el futuro. Revista UDCA Actualidad & Divulgación Científica. 2012;15:97–104. doi: https://doi.org/10.31910/rudca.v15.nsup.2012.897

Legg D. Paralympic Games: History and Legacy of a Global Movement. Physical Medicine and Rehabilitation Clinics of North America [Internet]. 2018 May 1;29(2):417–25. doi: https://doi.org/10.1016/j.pmr.2018.01.008

Morriën F, Taylor MJD, Hettinga FJ. Biomechanics in Paralympics: Implications for Performance. International Journal of Sports Physiology and Performance [Internet]. 2017 May 1;12(5):578–89. Doi: https://doi.org/10.1123/ijspp.2016-0199

Reina R, Vilanova-períz N. Guía sobre clasificación de la discapacidad en deporte paralímpico. En: Limencop SL, editor. España; 2016. p. 31–37.

Moya Cuevas RM. Deporte adaptado. España: Ceapat-Imserso; 2014 Sep 14. Disponible en: http://riberdis.cedid.es/handle/11181/5025

Chow JW, Kuenster AF, Lim Y tae. Kinematic analysis of javelin throw performed by wheelchair athletes of different functional classes. J Sports Sci Med. 2003;2(2):36. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3938047/

Wirth K, Hartmann H, Mickel C, Szilvas E, Keiner M, Sander A. Core Stability in Athletes: A Critical Analysis of Current Guidelines. Sports Medicine. 2016 Jul 30;47(3):401–14. doi: https://doi.org/10.1007/s40279-016-0597-7

Ghasempoor KH, Rahnama N, Bagherian S, Wikstrom EA. P18 The effect of core stability training on functional movement patterns in collegiate athletes. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2017. doi: https://doi.org/10.1136/bjsports-2017-anklesymp.50

Manchado C, García-Ruiz J, Cortell-Tormo JM, Tortosa-Martínez J. Effect of core training on male handball players’ throwing velocity. J Hum Kinet. 2017;56(1):177–85. doi: https://doi.org/10.1515/hukin-2017-0035

Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123–30. doi: https://doi.org/10.1177/0363546507301585

Lema CPH, Parra JEP. Lesiones medulares y discapacidad: revisión bibliográfica. Aquichan. 2010;10(2):157–72. doi: https://doi.org/10.5294/aqui.2010.10.2.5

Bjerkefors A, Squair JW, Chua R, Lam T, Chen Z, Carpenter MG. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation. J Rehabil Med. 2015;47(2):138–46. doi: https://doi.org/10.2340/16501977-1901

Triolo RJ, Bailey SN, Lombardo LM, Miller ME, Foglyano K, Audu ML. Effects of intramuscular trunk stimulation on manual wheelchair propulsion mechanics in 6 subjects with spinal cord injury. Arch Phys Med Rehabil. 2013;94(10):1997–2005. doi: https://doi.org/10.1016/j.apmr.2013.04.010

Hides JA, Stanton WR. Can motor control training lower the risk of injury for professional football players? Medicine & Science in Sports & Exercise. 2014;46(4):762–8. doi: https://doi.org/10.1249/MSS.0000000000000169

De Blaiser C, Roosen P, Willems T, Danneels L, Bossche L Vanden, De Ridder R. Is core stability a risk factor for lower extremity injuries in an athletic population? A systematic review. Physical therapy in sport. 2018;30:48–56. doi: https://doi.org/10.1016/j.ptsp.2017.08.076

Nesser TW, Lee WL. The relationship between core strength and performance in division i female soccer players. J Exerc Physiol Online. 2009;12(2):1750-4. doi: https://doi.org/10.1519/JSC.0b013e3181874564

Martínez FJP. Presente y Futuro de la Tecnología de la Realidad Virtual. Creatividad y sociedad. 2011;16:1-39. Disponible en: https://pdfslide.tips/technology/presente-y-futuro-de-la-tecnologia-de-la-realidad-virtual.html?page=1

Aznar Díaz I, Romero-Rodríguez JM, Rodríguez-García AM. La tecnología móvil de Realidad Virtual en educación: una revisión del estado de la literatura científica en España. 2018;7(1):256-274. doi: https://doi.org/10.21071/edmetic.v7i1.10139

Shahmoradi L, Almasi S, Ahmadi H, Bashiri A, Azadi T, Mirbagherie A, et al. Virtual reality games for rehabilitation of upper extremities in stroke patients. Journal of Bodywork and Movement Therapies. 2021 Apr 1;26:113–22. doi: https://doi.org/10.1016/j.jbmt.2020.10.006

Choi YH, Paik NJ. Mobile Game-based Virtual Reality Program for Upper Extremity Stroke Rehabilitation. J Vis Exp [Internet]. 2018 Mar 8;2018(133). doi: https://doi.org/10.3791/56241

Feng H, Li C, Liu J, Wang L, Ma J, Li G, et al. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research [Internet]. 2019;25:4186. doi: https://doi.org/10.12659/MSM.916455

Neumann DL, Moffitt RL, Thomas PR, Loveday K, Watling DP, Lombard CL, et al. A systematic review of the application of interactive virtual reality to sport. Virtual Reality. 2018;22(3):183–98. doi: https://doi.org/10.1007/s10055-017-0320-5

de Araújo AVL, Neiva JFDO, Monteiro CBDM, Magalhães FH. Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. BioMed Research International. 2019;. doi: https://doi.org/10.1155/2019/7106951

Fasola J, Kannape OA, Bouri M, Bleuler H, Blanke O. Error Augmentation Improves Visuomotor Adaptation during a Full-Body Balance Task. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2019;1529–33. doi: https://doi.org/10.1109/embc.2019.8857523

Chisholm DH, Ferrer BC, Domínguez NMC, Fuentes YP, Perdomo VC, Castillo YS. Protocolo de actuación de los equipos Thera Trainer en trastornos de equilibrio, postura y marcha del adulto mayor. Revista Cubana de Medicina Física y Rehabilitación. 2017;9(1):1–14. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=75117

Killane I, Fearon C, Newman L, McDonnell C, Waechter SM, Sons K, et al. Dual motor-cognitive virtual reality training impacts dual-task performance in freezing of gait. IEEE J Biomed Health Inform. 2015;19(6):1855–61. doi: https://doi.org/10.1109/JBHI.2015.2479625

Peruzzi A, Cereatti A, Della Croce U, Mirelman A. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2016;5:91–6. doi: https://doi.org/10.1016/j.msard.2015.11.002

Commission IPC. A Guide to the IWBF Functional Classification System for Wheelchair Basketball Players. Ontario: International Paralympic Committee ; 2004.

Gustavo de Souza Pena L, Barra Danyau C, Fernández M, Gustavo Teixeira Fabrício dos Santos L, Paulo Casteleti de Souza J, Luarte Rocha C, et al. Limitaciones y Posibilidades en el Entrenamiento del Baloncesto en Silla de Ruedas. Revista Peruana de ciencia de la actividad fisica y del deporte [Internet]. 2020 Jun 14 [cited 2022 Aug 18];7(4):9–9. Disponible en: https://rpcafd.com/index.php/rpcafd/article/view/117/163

de Souza Pena LG, Danyau CB, Fernández M, dos Santos LGTF, Casteletti JP, Rocha CL, et al. Limitaciones y Posibilidades en el Entrenamiento del Baloncesto en Silla de Ruedas. Revista Peruana de ciencia de la actividad fisica y del deporte. 2020;7(4):9. Disponible en: https://rpcafd.com/index.php/rpcafd/article/view/117

Reed CA, Ford KR, Myer GD, Hewett TE. The effects of isolated and integrated ‘core stability’ training on athletic performance measures. Sports medicine. 2012;42(8):697–706. doi: https://doi.org/10.1007/BF03262289

Saeterbakken AH, Van den Tillaar R, Seiler S. Effect of core stability training on throwing velocity in female handball players. The Journal of Strength & Conditioning Research. 2011;25(3):712–8. doi: https://doi.org/10.1519/jsc.0b013e3181cc227e

Harvey L. Management of Spinal Cord Injuries E-Book: A Guide for Physiotherapists. Amsterdam: Elsevier Health Sciences; 2008.

Milosevic M, Yokoyama H, Grangeon M, Masani K, Popovic MR, Nakazawa K, et al. Muscle synergies reveal impaired trunk muscle coordination strategies in individuals with thoracic spinal cord injury. Journal of Electromyography and Kinesiology. 2017;36:40–8. doi: https://doi.org/10.1016/j.jelekin.2017.06.007

Larson DJ, Brown SHM. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals. Hum Mov Sci. 2018;57:13–20. doi: https://doi.org/10.1016/j.humov.2017.10.019

Zazulak B, Cholewicki J, Reeves PN. Neuromuscular control of trunk stability: clinical implications for sports injury prevention. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2008;16(8):497–505. doi: https://doi.org/10.5435/00124635-200809000-00002

Rojas A, Fernando J. Entrenamiento en alto rendimiento deportivo: desde las percepciones de los atletas paralímpicos [Trabajo de grado]. Bogotá: Universidad Pedagógica Nacional; 2019.

Vera-García FJ, Barbado D, Moreno-Pérez V, Hernández-Sánchez S, Juan-Recio C, Elvira JLL. Core stability: evaluación y criterios para su entrenamiento. Rev Andal Med Deport. 2015;8(3):130–7. doi: https://doi.org/10.1016/j.ramd.2014.02.005

Anderson K, Behm DG. The impact of instability resistance training on balance and stability. Sports medicine. 2005;35(1):43–53. doi: https://doi.org/10.2165/00007256-200535010-00004

Downloads

Download data is not yet available.