Measuring Hypochondria with Short Health Anxiety Inventory: Psychometric Properties in Colombian University Students

Medición de la hipocondría con el Short Health Anxiety Inventory: propiedades psicométricas en estudiantes universitarios colombianos

Abstract


Introduction. The Short Health Anxiety Inventory is a commonly used tool for assessing health anxiety, but its psychometric properties and internal structure have not been examined in a Latin American Spanish-speaking population. This study aimed to establish the psychometric properties among Colombian university students.


Method. The goodness of fit of four latent structure models of the Short Health Anxiety Inventory was tested using confirmatory factor analysis in a sample of 1004 Colombian university students.


Results. The results show that the original model's structure does not fit well (CFI = .808; RMSEA = .074), and the reliability was .796 and .703 for the original two variables.


Conclusions. The findings do not support the utilization of the Colombian version of the Short Health Anxiety Inventory by researchers and clinicians among Colombian university students.


Downloads

Download data is not yet available.

Citado por


Authors


Renato Zambrano-Cruz
Jorge Restrepo-Carvajal
Tatiana Castañeda-Quirama

References


American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5-TR 5th ed. Washington D.C.: The Association; 2022. 1142 p. DOI: https://doi.org/10.1176/appi.books.9780890425787

Salkovskis PM, Rimes KA, Warwick HMC, Clark DM. The Health Anxiety Inventory: development and validation of scales for the measurement of health anxiety and hypochondriasis. Psychol Med [Internet]. 2002;32(5): 843-53. doi: https://doi.org/10.1017/S0033291702005822 DOI: https://doi.org/10.1017/S0033291702005822

Arnáez S, García-Soriano G, López-Santiago J, Belloch A. The Spanish validation of the Short Health Anxiety Inventory: Psychometric properties and clinical utility. Int J Clin Health Psychol [Internet]. 2019; 19(3): 251-60. doi: https://doi.org/10.1016/j.ijchp.2019.05.003 DOI: https://doi.org/10.1016/j.ijchp.2019.05.003

Alberts NM, Hadjistavropoulos HD, Jones SL, Sharpe D. The Short Health Anxiety Inventory: A systematic review and meta-analysis. J Anxiety Disord [Internet]. 2013;27(1):68-78. doi: https://doi.org/10.1016/j.janxdis.2012.10.009 DOI: https://doi.org/10.1016/j.janxdis.2012.10.009

Morales A, Reis S, Espada JP, Orgilés M. Portuguese validation of the Short Health Anxiety Inventory: Factor structure, reliability, and factor invariance. J Health Psychol [Internet]. 2018;23(14):1872-83. doi: https://doi.org/10.1177/1359105316669859 DOI: https://doi.org/10.1177/1359105316669859

Wheaton MG, Berman NC, Franklin JC, Abramowitz JS. Health Anxiety: Latent Structure and Associations with Anxiety-related Psychological Processes in a Student Sample. J Psychopathol Behav Assess [Internet]. 2010;32:565-74. doi: https://doi.org/10.1007/s10862-010-9179-4 DOI: https://doi.org/10.1007/s10862-010-9179-4

Alberts NM, Sharpe D, Kehler MD, Hadjistavropoulos HD. Health anxiety: Comparison of the latent structure in medical and non-medical samples. J Anxiety Disord [Internet]. 2011;25(4):612-4. doi: https://doi.org/10.1016/j.janxdis.2011.01.011 DOI: https://doi.org/10.1016/j.janxdis.2011.01.011

Spielberger CD, Reheiser EC. Measuring anxiety, anger, depression, and curiosity as emotional states and personality traits with the STAI, STAXI and STPI. In: Hilsenroth MJ, Segal DL, editors. Comprehensive handbook of psychological assessment, Vol. 2: Personality assessment. Hoboken: John Wiley & Sons, Inc.; 2004. p. 70-86.

Montero I, Leon O. A guide for naming research studies in Psychology. Int J Clin Health Psychol [Internet]. 2007;7(3): 847-62. Available from: http://www.aepc.es/ijchp/articulos.php?coid=Espa%EF%BF%BDol&id=256

Abramowitz JS, Deacon BJ, Valentiner DP. The Short Health Anxiety Inventory: Psychometric Properties and Construct Validity in a Non-clinical Sample. Cognit Ther Res [Internet]. 2007;31(6):871-83. doi: https://doi.org/10.1007/s10608-006-9058-1 DOI: https://doi.org/10.1007/s10608-006-9058-1

Forero CG, Maydeu-Olivares A, Gallardo-Pujol D. Factor Analysis with Ordinal Indicators: A Monte Carlo Study Comparing DWLS and ULS Estimation. Struct Equ Modeling [Internet]. 2009;16(4):625-41. doi: https://doi.org/10.1080/10705510903203573 DOI: https://doi.org/10.1080/10705510903203573

Mîndrilă D. Maximum Likelihood (ML) and Diagonally Weighted Least Squares (DWLS) Estimation Procedures: A Comparison of Estimation Bias with Ordinal and Multivariate Non-Normal Data. International Journal for Digital Society [Internet]. 2010;1(1):60-66. doi: https://doi.org/10.20533/ijds.2040.2570.2010.0010 DOI: https://doi.org/10.20533/ijds.2040.2570.2010.0010

Schubert A-L, Hagemann D, Voss A, Bergmann K. Evaluating the model fit of diffusion models with the root mean square error of approximation. J Math Psychol [Internet]. 2017;77:29-45. doi: https://doi.org/10.1016/j.jmp.2016.08.004 DOI: https://doi.org/10.1016/j.jmp.2016.08.004

Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Modeling [Internet]. 1999;6(1):1-55. doi: https://doi.org/10.1080/10705519909540118 DOI: https://doi.org/10.1080/10705519909540118

Gadernmann AM, Guhn M, Zumbo BD. Estimating ordinal reliability for Likert-type and ordinal item response data: A conceptual, empirical, and practical guide. Pract Assess Res Evaluation [Internet]. 2012;17:1-13. doi: https://doi.org/10.7275/n560-j767

Zumbo BD, Gadermann AM, Zeisser C. Ordinal Versions of Coefficients Alpha and Theta for Likert Rating Scales. J Mod Appl Stat Methods [Internet]. 2007;6(1):21-9. doi: https://doi.org/10.22237/jmasm/1177992180 DOI: https://doi.org/10.22237/jmasm/1177992180

Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med [Internet]. 2016;15(2):155-63. doi: https://doi.org/10.1016/j.jcm.2016.02.012 DOI: https://doi.org/10.1016/j.jcm.2016.02.012

Taber KS. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res Sci Educ [Internet]. 2018;48:1273-96. doi: https://doi.org/10.1007/s11165-016-9602-2 DOI: https://doi.org/10.1007/s11165-016-9602-2

Alshayea AK. Latent structure, measurement invariance, and reliability of an Arabic version of the Short Health Anxiety Inventory. J Exp Psychopathol [Internet]. 2020;11(2). doi: https://doi.org/10.1177/2043808720912629 DOI: https://doi.org/10.1177/2043808720912629

Kelley K, Lai K. Accuracy in Parameter Estimation for the Root Mean Square Error of Approximation: Sample Size Planning for Narrow Confidence Intervals. Multivariate Behav Res [Internet]. 2011;46(1):1-32. doi: https://doi.org/10.1080/00273171.2011.543027 DOI: https://doi.org/10.1080/00273171.2011.543027

Sauer KS, Jungmann SM, Witthöft M. Emotional and Behavioral Consequences of the COVID-19 Pandemic: The Role of Health Anxiety, Intolerance of Uncertainty, and Distress (In)Tolerance. Int J Environ Res Public Health [Internet]. 2020;17(19):1-18. doi: https://doi.org/10.3390/ijerph17197241 DOI: https://doi.org/10.3390/ijerph17197241

Downloads

Download data is not yet available.