Rehabilitation Programs of Executive Functions in Young and Middle Adulthood based on Computational Systems: a Scoping Review

Programas de rehabilitación de las funciones ejecutivas en la adultez joven y media basados en sistemas computacionales: una revisión de alcance

Abstract


Introduction. The use of computational systems has ventured into different healthcare areas, such as rehabilitation and stimulation of cognitive processes. To this date, it is possible to identify some reviews collecting studies on the efficacy and effects of those programs in groups such as older adults, children, and teenagers; there is a lack of academic literature giving an account of young and middle-aged adults.


Objective. To identify empirical studies that measured the feasibility and effect of computer-based stimulation and rehabilitation programs for cognitive functions in young and middle-aged adults.


Materials and methods. The PRISMA ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) extension was used as a base for a scoping review, as suggested by Cochrane Collaboration. Five databases —Science Direct, Scopus, Springer, PubMed, and Taylor & Francis— were used to trace information. The data registry and synthesis of the results was carried out independently by two reviewers.


Results. 896 registries were found between 2015 and 2022, of which 91 met the eligibility principles, which evaluated the effects of programs based on computational systems on executive functions on young and middle-aged adults.


Conclusion. Most of the interventions based on computational systems showed to be feasible and had moderate to significant effects on executive functions in young and middle-aged adults.


Downloads

Download data is not yet available.

Citado por


Authors


Carolina Robledo Castro
Piedad Rocio Lerma Castaño
Luis Gerardo Pachón Ospina

References


Goldstein S, Naglieri JA, Princiotta D, Otero TM. Introduction: A history of executive functioning as a theoretical and clinical construct. In: Handbook of executive functioning. New York, NY, US: Springer Science + Business Media; 2014. p. 3-12. doi: https://doi.org/10.1007/978-1-4614-8106-5_1

Portellano Pérez JA, García Alba J. Neuropsicología de la atención, las funciones ejecutivas y la memoria. Madrid: Síntesis; 2014.

Goldberg E. El director ejecutivo del cerebro: Una mirada a los lóbulos frontales. In: El cerebro ejecutivo Lóbulos frontales y mente civilizada. Barcelona: Planeta; 2015. p. 37-38.

Blair C, Ursache A. A bidirectional theory of executive functions and self-regulation. In: Vohs K, Baumeister R, editores. Handbook of self-regulation. New York: Guilford Press; 2011. p. 300-320.

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex «Frontal Lobe» tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49-100. doi: https://doi.org/10.1006/cogp.1999.0734

Flores Lázaro JC, Ostrosky F. Desarrollo neuropsicológico de los lóbulos frontales y funciones ejecutivas. México: El Manual Moderno; 2012

Zelazo PD, Li Q, Müller U. Hot and cool aspects of executive function: Relations in early development: Interrelationships among executive functioning, wo. In: Schneider W, Schumann-Hengsteler R, Sodian B, editors. Young children’s cognitive development: Interrelationships among executive functioning, wo. Mahwah, NJ: Erlbaum; 2005. p. 71-93.

Cañabate SC, Alcázar AM. Control ejecutivo, toma de decisiones, razonamiento y resolución de problemas. In: Redolar D, editor. Neurociencia cognitiva. España: Editorial Médica Panamericana; 2013. p. 719-745.

Baddeley A, Eysenck MW, Anderson MC. Memoria de trabajo. In: Memoria. 2da edición. Madrid: Alianza. 2009. p. 63-91.

Delgado-Mejía ID, Etchepareborda MC. [Disorders of executive functions. Diagnosis and treatment]. Rev Neurol. 2013;57 Suppl 1:S95-103. doi: https://doi.org/10.33588/rn.57S01.2013236

Vayas R, Carrera L. Disfunción ejecutiva. Síntomas y relevancia de su detección desde Atención Primaria. Revista Clínica de Medicina de Familia. 2012;5(3):191-7. doi. https://doi.org/10.4321/S1699-695X2012000300007

Portellano JA. Intervención neuropsicológica de las funciones ejecutivas. In: Neuroeducación y funciones ejecutivas. Madrid. CEPE; 2018. p. 117-146.

Trápaga CM. Introducción a la estimulación y rehabilitación de las funciones cognitivas. In: Trápaga CM, Pelayo HJ, Sánchez I, Bello Z, Bautista A. Editores. De la psicología cognitiva a la neuropsicología. México: Manual Moderno; 2018. p. 18-59.

Liu Q, Zhu X, Ziegler A, Shi J. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity. Sci Rep. 2015;5(1):14200. doi: https://doi.org/10.1038/srep14200

Seelye AM, Schmitter-Edgecombe M, Das B, Cook DJ. Application of Cognitive Rehabilitation Theory to the Development of Smart Prompting Technologies. IEEE Reviews in Biomedical Engineering. 2012; 5:29-44. doi: https://doi.org/10.1109/RBME.2012.2196691

Homer BD, Ober TM, Flynn RM. Children and Adolescents’ Development of Executive Functions in Digital Contexts. In: Proceedings of the Technology, Mind, and Society [Internet]. New York, NY, USA: Association for Computing Machinery; 2018 [citado 19 de septiembre de 2022]. p. 1-3. (TechMindSociety ’18). doi: https://doi.org/10.1145/3183654.3183696

Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS, et al. Putting brain training to the test. Nature. 2010;465(7299):775-8. doi: https://doi.org/10.1038/nature09042

Schubert T, Strobach T, Karbach J. New directions in cognitive training: on methods, transfer, and application. Psychological Research. 2014;78(6):749-55. doi: https://doi.org/10.1007/s00426-014-0619-8

Guerrero G, García A. Plataformas de rehabilitación neuropsicológica: estado actual y líneas de trabajo. Neurología. 2015;30(6):359-66. doi: https://doi.org/10.1016/j.nrl.2013.06.015

Robledo-Castro, CR, Castillo-Ossa, Corchado, JM. Artificial Cognitive Systems Applied in Executive Function Stimulation and Rehabilitation Programs: A Systematic Review. Arabian journal for science and engineering. 2022;48:2399–2427. 28 doi: https://doi.org/10.1007/s13369-022-07292-5

Gates NJ, Rutjes AW, Di Nisio M, Karim S, Chong LY, March E, et al. Computerised cognitive training for maintaining cognitive function in cognitively healthy people in late life. Cochrane Database Syst Rev. 2019;3:CD012277. doi: https://doi.org/10.1002/14651858.CD012277.pub2

Ten Brinke LF, Best JR, Chan JLC, Ghag C, Erickson KI, Handy TC, et al. The Effects of Computerized Cognitive Training With and Without Physical Exercise on Cognitive Function in Older Adults: An 8-Week Randomized Controlled Trial. J Gerontol A Biol Sci Med Sci. 2020;75(4):755-63. doi: https://doi.org/10.1093/gerona/glz115

Yoo C, Yong M hyun, Chung J, Yang Y. Effect of computerized cognitive rehabilitation program on cognitive function and activities of living in stroke patients. J Phys Ther Sci. 2015;27(8):2487-9. doi: https://doi.org/10.1589/jpts.27.2487

Gates NJ, Vernooij RW, Di Nisio M, Karim S, March E, Martínez G, et al. Computerised cognitive training for preventing dementia in people with mild cognitive impairment. Cochrane Database Syst Rev. 2019;3:CD012279. doi: https://doi.org/10.1002/14651858.CD012279.pub2

Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology. 2018;18(1):143. doi: https://doi.org/10.1186/s12874-018-0611-x

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005;8(1):19-32. doi: https://doi.org/10.1080/1364557032000119616

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-73. doi: https://doi.org/10.7326/M18-0850

Miller EK, Cohen JD. An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience. 2001;24(1):167-202. doi: https://doi.org/10.1146/annurev.neuro.24.1.167

Stelzer F, Andés ML, Canet-Juric L, Introzzi I. Working Memory and Fluid Intelligence. A Review of its Relations. Acta de investigación psicológica. 2016;6(1):2302-16. doi: https://doi.org/10.1016/s2007-4719(16)30051-5

Bell MD, Laws H, Pittman B, Johannesen JK. Comparison of focused cognitive training and portable “brain-games” on functional outcomes for vocational rehabilitation participants. Sci Rep. [Internet]. 2018;8(1):1779. doi: https://doi.org/10.1038/s41598-018-20094-w

Biagianti B, Fisher M, Howard L, Rowlands A, Vinogradov S, Woolley J. Feasibility and preliminary efficacy of remotely delivering cognitive training to people with schizophrenia using tablets. Schizophr Res Cogn. [Internet]. 2017;10:7-14. doi: https://doi.org/10.1016/j.scog.2017.07.003

Harvey PD, Balzer AM, Kotwicki RJ. Training engagement, baseline cognitive functioning, and cognitive gains with computerized cognitive training: A cross-diagnostic study. Schizophr Res Cogn. [Internet]. 2020;19:100150. doi: https://doi.org/10.1016/j.scog.2019.100150

Piskulic D, Barbato M, Liu L, Addington J. Pilot study of cognitive remediation therapy on cognition in young people at clinical high risk of psychosis. Psychiatry Research [Internet]. 2015;225(1):93-98. doi: https://doi.org/10.1016/j.psychres.2014.10.021

Michalopoulou PG, Lewis SW, Drake RJ, Reichenberg A, Emsley R, Kalpakidou AK, et al. Modafinil combined with cognitive training: Pharmacological augmentation of cognitive training in schizophrenia. European Neuropsychopharmacology [Internet]. 2015;25(8):1178-89. doi: https://doi.org/10.1016/j.euroneuro.2015.03.009

Tarasenko M, Perez VB, Pianka ST, Vinogradov S, Braff DL, Swerdlow NR, et al. Measuring the capacity for auditory system plasticity: An examination of performance gains during initial exposure to auditory-targeted cognitive training in schizophrenia. Schizophr Res [Internet]. 2016;172(1-3):123-30. doi: https://doi.org/10.1016/j.schres.2016.01.019

Mahncke HW, Kim SJ, Rose A, Stasio C, Buckley P, Caroff S, et al. Evaluation of a plasticity-based cognitive training program in schizophrenia: Results from the eCaesar trial. Schizophr Res [Internet]. 2019; 208:182-189. doi: https://doi.org/10.1016/j.schres.2019.03.006

Jahshan C, Vinogradov S, Wynn JK, Hellemann G, Green MF. A Randomized Controlled Trial Comparing a “Bottom-Up” and “Top-Down” Approach to Cognitive Training in Schizophrenia. J Psychiatr Res [Internet]. 2019;109:118-25. doi: https://doi.org/10.1016/j.jpsychires.2018.11.027

Reeder C, Huddy V, Cella M, Taylor R, Greenwood K, Landau S, et al. A new generation computerised metacognitive cognitive remediation programme for schizophrenia (CIRCuiTS): a randomised controlled trial. Psychol Med [Internet]. 2017;47(15):2720-2730. doi: https://doi.org/10.1017/S0033291717001234

Palumbo D, Mucci A, Giordano GM, Piegari G, Aiello C, Pietrafesa D, et al. The Efficacy, Feasibility And Acceptability Of A Remotely Accessible Use Of CIRCuiTS, A Computerized Cognitive Remediation Therapy Program For Schizophrenia: A Pilot Study. NDT [Internet]. 2019;15:3103-3113. doi: https://doi.org/10.2147/NDT.S221690

Fernandez-Gonzalo S, Turon M, Jodar M, Pousa E, Hernandez Rambla C, García R, et al. A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: A pilot study. Psychiatry Res [Internet]. 2015;228(3):501-509. doi: https://doi.org/10.1016/j.psychres.2015.06.007

Matsuoka K, Morimoto T, Matsuda Y, Yasuno F, Taoka T, Miyasaka T, et al. Computer-assisted cognitive remediation therapy for patients with schizophrenia induces microstructural changes in cerebellar regions involved in cognitive functions. Psychiatry Res Neuroimaging. [Internet]. 2019; 292:41-6. doi: https://doi.org/10.1016/j.pscychresns.2019.09.001

Messinis L, Nasios G, Kosmidis MH, Zampakis P, Malefaki S, Ntoskou K, et al. Efficacy of a Computer-Assisted Cognitive Rehabilitation Intervention in Relapsing-Remitting Multiple Sclerosis Patients: A Multicenter Randomized Controlled Trial. Behav Neurol [Internet]. 2017;2017:5919841. doi: https://doi.org/10.1155/2017/5919841

Messinis L, Kosmidis MH, Nasios G, Konitsiotis S, Ntoskou A, Bakirtzis C, et al. Do Secondary Progressive Multiple Sclerosis patients benefit from Computer- based cognitive neurorehabilitation? A randomized sham controlled trial. Mult Scler Relat Disord [Internet]. 2020;39:101932. doi: https://doi.org/10.1016/j.msard.2020.101932

Arian Darestani A, Naeeni Davarani M, Hassani-Abharian P, Zarrindast MR, Nasehi M. The therapeutic effect of treatment with RehaCom software on verbal performance in patients with multiple sclerosis. J Clin Neurosci [Internet]. 2020;72:93-97. doi: https://doi.org/10.1016/j.jocn.2020.01.007

Campbell J, Langdon D, Cercignani M, Rashid W. A Randomised Controlled Trial of Efficacy of Cognitive Rehabilitation in Multiple Sclerosis: A Cognitive, Behavioural, and MRI Study [Internet]. Neural Plast. 2016;2016:4292585. doi: https://doi.org/10.1155/2016/4292585

Naeeni Davarani M, Arian Darestani A, Hassani-Abharian P, Vaseghi S, Zarrindast MR, Nasehi M. RehaCom rehabilitation training improves a wide-range of cognitive functions in multiple sclerosis patients. Appl Neuropsychol Adult [Internet].2022;29(2):262-272. doi: https://doi.org/10.1080/23279095.2020.1747070

Bonavita S, Sacco R, Della Corte M, Esposito S, Sparaco M, d’Ambrosio A, et al. Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study. J Neurol [Internet]. 2015;262(1):91-100. doi: https://doi.org/10.1007/s00415-014-7528-z

Bove RM, Rush G, Zhao C, Rowles W, Garcha P, Morrissey J, et al. A Videogame-Based Digital Therapeutic to Improve Processing Speed in People with Multiple Sclerosis: A Feasibility Study. Neurol Ther [Internet]. 2019;8(1):135-145. doi: https://doi.org/10.1007/s40120-018-0121-0

Chiaravalloti ND, Goverover Y, Costa SL, DeLuca J. A Pilot Study Examining Speed of Processing Training (SPT) to Improve Processing Speed in Persons With Multiple Sclerosis. Frontiers in Neurology [Internet]. 2018;9- 685. doi: https://doi.org/10.3389/fneur.2018.00685

Pérez-Martín MY, González-Platas M, Eguía-Del Río P, Croissier-Elías C, Jiménez Sosa A. Efficacy of a short cognitive training program in patients with multiple sclerosis. Neuropsychiatr Dis Treat [Internet].2017;13:245-52. doi: https://doi.org/10.2147/NDT.S124448

Pedullà L, Brichetto G, Tacchino A, Vassallo C, Zaratin P, Battaglia MA, et al. Adaptive vs. non-adaptive cognitive training by means of a personalized App: a randomized trial in people with multiple sclerosis. J Neuroeng Rehabil [Internet]. 2016;13:88. doi: https://doi.org/10.1186/s12984-016-0193-y

Blair M, Goveas D, Safi A, Marshall C, Rosehart H, Orenczuk S, et al. Does cognitive training improve attention/working memory in persons with MS? A pilot study using the Cogmed Working Memory Training program. Mult Scler Relat Disord [Internet]. 2021; 49:102770. doi: https://doi.org/10.1016/j.msard.2021.102770

Rahmani M, Rahimian Boogar I, Talepasand S, Nokani M. Comparing the Effectiveness of Computer-Based, Manual-based, and Combined Cognitive Rehabilitation on Cognitive Functions in Relapsing-Remitting Multiple Sclerosis Patients. Basic Clin Neurosci [Internet]. 2020;11(1):99-110. doi: https://doi.org/10.32598/bcn.9.10.430

Motter JN, Grinberg A, Lieberman DH, Iqnaibi WB, Sneed JR. Computerized cognitive training in young adults with depressive symptoms: Effects on mood, cognition, and everyday functioning. J Affect Disord. [Internet]. 2019;245:28-37. doi: https://doi.org/10.1016/j.jad.2018.10.109

Ronold EH, Joormann J, Hammar Å. Computerized Working Memory Training in Remission From Major Depressive Disorder: Effects on Emotional Working Memory, Processing Speed, Executive Functions, and Associations With Symptoms. Frontiers in Behavioral Neuroscience [Internet]. 2022;16:887596. doi: https://doi.org/10.3389/fnbeh.2022.887596

Hagen BI, Stubberud J. Goal Management Training and Computerized Cognitive Training in Depression—a 2-Year Follow-Up of a Randomized Controlled Trial. Frontiers in Psychiatry [Internet]. 2021;12. doi: https://doi.org/10.3389/fpsyt.2021.737518

Listunova L, Kienzle J, Bartolovic M, Jaehn A, Grützner TM, Wolf RC, et al. Cognitive remediation therapy for partially remitted unipolar depression: A single-blind randomized controlled trial. J Affect Disord [Internet] .2020;276:316-26. doi: https://doi.org/10.1016/j.jad.2020.07.008

Hotton M, Derakshan N, Fox E. A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers. Behav Res Ther [Internet]. 2018;100:67-77. doi: https://doi.org/10.1016/j.brat.2017.10.011

Sánchez-López A, De Raedt R, van Put J, Koster EHW. A novel process-based approach to improve resilience: Effects of computerized mouse-based (gaze)contingent attention training (MCAT) on reappraisal and rumination. Behav Res Ther [Internet]. 2019;118:110-120. doi: https://doi.org/10.1016/j.brat.2019.04.005

Fonzo GA, Fine NB, Wright RN, Achituv M, Zaiko YV, Merin O, et al. Internet-delivered computerized cognitive & affective remediation training for the treatment of acute and chronic posttraumatic stress disorder: Two randomized clinical trials. J Psychiatr Res [Internet] 2019;115:82-89. doi: https://doi.org/10.1016/j.jpsychires.2019.05.007

McBride RL, Horsfield S, Sandler CX, Cassar J, Casson S, Cvejic E, et al. Cognitive remediation training improves performance in patients with chronic fatigue syndrome. Psychiatry Res [Internet]. 2017;257:400-405. doi: https://doi.org/10.1016/j.psychres.2017.08.035

Clausen AN, Thelen J, Francisco AJ, Bruce J, Martin L, McDowd J, Aupperle RL. Computer-Based Executive Function Training for Combat Veterans With PTSD: A Pilot Clinical Trial Assessing Feasibility and Predictors of Dropout. Front Psychiatry. 2019;10:62. doi: https://doi.org/10.3389/fpsyt.2019.00062

Van de Ven RM, Schmand B, Groet E, Veltman DJ, Murre JMJ. The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study. BMC Neurol [Internet]. 2015;15:144. doi: https://doi.org/10.1186/s12883-015-0397-y

Van de Ven RM, Murre JMJ, Buitenweg JIV, Veltman DJ, Aaronson JA, Nijboer TCW, et al. The influence of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: A multi-center randomized controlled trial. PLoS One [Internet]. 2017;12(11):e0187582. doi: https://doi.org/10.1371/journal.pone.0187582

Välimäki M, Mishina K, Kaakinen JK, Holm SK, Vahlo J, Kirjonen M, et al. Digital Gaming for Improving the Functioning of People With Traumatic Brain Injury: Randomized Clinical Feasibility Study. J Med Internet Res [Internet]. 2018;20(3):e77. doi: https://doi.org/10.2196/jmir.7618

De Luca R, Aragona B, Leonardi S, Torrisi M, Galletti B, Galletti F, et al. Computerized Training in Poststroke Aphasia: What About the Long-Term Effects? A Randomized Clinical Trial. J Stroke Cerebrovasc Dis [Internet].2018;27(8):2271-2276. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.019

Fernandez E, Bergado Rosado JA, Rodriguez Perez D, Salazar Santana S, Torres Aguilar M, Bringas ML. Effectiveness of a Computer-Based Training Program of Attention and Memory in Patients with Acquired Brain Damage. Behav Sci (Basel) [Internet]. 2017;8(1):4. doi: https://doi.org/10.3390/bs8010004

Oliveira J, Gamito P, Lopes B, Silva AR, Galhordas J, Pereira E, et al. Computerized cognitive training using virtual reality on everyday life activities for patients recovering from stroke. Disabil Rehabil Assist Technol [Internet]. 2022;17(3):298-303. doi: https://doi.org/10.1080/17483107.2020.1749891

Mitrovic A, Mathews M, Ohlsson S, Holland J, McKinlay A. Computer-Based Post-Stroke Rehabilitation of Prospective Memory. Journal of Applied Research in Memory and Cognition [Internet]. 2016;5(2):204-214. doi: https://doi.org/10.1016/j.jarmac.2016.03.006

De Luca R, Leonardi S, Spadaro L, Russo M, Aragona B, Torrisi M, et al. Improving Cognitive Function in Patients with Stroke: Can Computerized Training Be the Future? J Stroke Cerebrovasc Dis [Internet]. 2018;27(4):1055-1060. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.11.008

Dundon NM, Dockree SP, Buckley V, Merriman N, Carton M, Clarke S, et al. Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury. [Internet]. Neuropsychologia. 2015;75:74-87. doi: https://doi.org/10.1016/j.neuropsychologia.2015.05.012

Khemiri L, Brynte C, Stunkel A, Klingberg T, Jayaram-Lindström N. Working Memory Training in Alcohol Use Disorder: A Randomized Controlled Trial. Alcohol Clin Exp Res. [Internet]. 2019;43(1):135-46. doi: https://doi.org/10.1111/acer.13910

Rass O, Schacht RL, Buckheit K, Johnson MW, Strain EC, Mintzer MZ. A randomized controlled trial of the effects of working memory training in methadone maintenance patients. Drug Alcohol Depend [Internet]. 2015;156:38-46. doi: https://doi.org/10.1016/j.drugalcdep.2015.08.012

Brooks SJ, Wiemerslage L, Burch KH, Maiorana SA, Cocolas E, Schiöth HB, et al. The impact of cognitive training in substance use disorder: the effect of working memory training on impulse control in methamphetamine users. Psychopharmacology (Berl). [Internet]. 2017;234(12):1911-1921. doi: https://doi.org/10.1007/s00213-017-4597-6

Brooks SJ, Burch KH, Maiorana SA, Cocolas E, Schioth HB, Nilsson EK, et al. Psychological intervention with working memory training increases basal ganglia volume: A VBM study of inpatient treatment for methamphetamine use. Neuroimage Clin [Internet]. 2016;12:478-91. doi: https://doi.org/10.1016/j.nicl.2016.08.019

Marceau EM, Berry J, Lunn J, Kelly PJ, Solowij N. Cognitive remediation improves executive functions, self-regulation and quality of life in residents of a substance use disorder therapeutic community. Drug Alcohol Depend [Internet]. 2017;178:150-8. doi: https://doi.org/10.1016/j.drugalcdep.2017.04.023

Valls-Serrano C, Caracuel A, Verdejo-Garcia A. Goal Management Training and Mindfulness Meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment. Drug Alcohol Depend [Internet]. 2016;165:9-14. doi: https://doi.org/10.1016/j.drugalcdep.2016.04.040

Lewis B, Garcia CC, Price JL, Schweizer S, Nixon SJ. Cognitive training in recently-abstinent individuals with alcohol use disorder improves emotional stroop performance: Evidence from a randomized pilot trial. Drug Alcohol Depend [Internet]. 2022;231:109239. doi: https://doi.org/10.1016/j.drugalcdep.2021.109239

Loughead J, Falcone M, Wileyto EP, Albelda B, Audrain-McGovern J, Cao W, et al. Can brain games help smokers quit?: Results of a randomized clinical trial. Drug Alcohol Depend [Internet]. 2016;168:112-8. doi: https://doi.org/10.1016/j.drugalcdep.2016.08.621

Kolodny T, Ashkenazi Y, Farhi M, Shalev L. Computerized Progressive Attention Training (CPAT) vs. Active Control in Adults with ADHD. Journal of Cognitive Enhancement [Internet]. 2017;1(4):526-538. doi: https://doi.org/10.1007/s41465-017-0056-x

Liu ZX, Glizer D, Tannock R, Woltering S. EEG alpha power during maintenance of information in working memory in adults with ADHD and its plasticity due to working memory training: A randomized controlled trial. Clin Neurophysiol [Internet]. 2016;127(2):1307-20. doi: https://doi.org/10.1016/j.clinph.2015.10.032

Mawjee K, Woltering S, Tannock R. Working Memory Training in Post-Secondary Students with ADHD: A Randomized Controlled Study. PLoS One [Internet]. 2015;10(9):e0137173. doi: https://doi.org/10.1371/journal.pone.0137173

Best MW, Gale D, Tran T, Haque MK, Bowie CR. Brief executive function training for individuals with severe mental illness: Effects on EEG synchronization and executive functioning. Schizophr Res [Internet]. 2019; 203:32-40. doi: https://doi.org/10.1016/j.schres.2017.08.052

Kashyap H, Reddy P, Mandadi S, Narayanaswamy JC, Sudhir PM, Reddy YCJ. Cognitive training for neurocognitive and functional impairments in obsessive compulsive disorder: A case report. Journal of Obsessive-Compulsive and Related Disorders [Internet]. 2019;23:100480. doi: https://doi.org/10.1016/j.jocrd.2019.100480

Wu LM, Amidi A, Tanenbaum ML, Winkel G, Gordon WA, Hall SJ, et al. Computerized cognitive training in prostate cancer patients on androgen deprivation therapy: A pilot study. Support Care Cancer [Internet]. 2018;26(6):1917-1926. doi: https://doi.org/10.1007/s00520-017-4026-8

Von Ah D, McDonald BC, Crouch AD, Ofner S, Perkins S, Storey S, Considine R, Unverzagt F. Randomized double-masked controlled trial of cognitive training in breast cancer survivors: a preliminary study. Support Care Cancer [Internet]. 2022:(9):7457-7467. doi: https://doi.org/10.1007/s00520-022-07182-4

Bellens A, Roelant E, Sabbe B, Peeters M, van Dam PA. A video-game based cognitive training for breast cancer survivors with cognitive impairment: A prospective randomized pilot trial. Breast [Internet]. 2020;53:23-32. doi: https://doi.org/10.1016/j.breast.2020.06.003

Damholdt MF, Mehlsen M, O’Toole MS, Andreasen RK, Pedersen AD, Zachariae R. Web-based cognitive training for breast cancer survivors with cognitive complaints-a randomized controlled trial. Psychooncology. [Internet]. 2016;25(11):1293-300. doi: https://doi.org/10.1002/pon.4058

Bartlett DM, Govus A, Rankin T, Lampit A, Feindel K, Poudel G, Teo WP, Lo J, Georgiou-Karistianis N, Ziman MR, Cruickshank TM. The effects of multidisciplinary rehabilitation on neuroimaging, biological, cognitive and motor outcomes in individuals with premanifest Huntington's disease. Journal of the neurological sciences [Internet]. 2020;416:117022. doi: https://doi.org/10.1016/j.jns.2020.117022

Yhnell E, Furby H, Lowe RS, Brookes-Howell LC, Drew CJG, Playle R, et al. A randomised feasibility study of computerised cognitive training as a therapeutic intervention for people with Huntington’s disease (CogTrainHD). Pilot and Feasibility Studies [Internet]. 2020;6(1):88. doi: https://doi.org/10.1186/s40814-020-00623-z

Towe SL, Patel P, Meade CS. The Acceptability and Potential Utility of Cognitive Training to Improve Working Memory in Persons Living With HIV: A Preliminary Randomized Trial. J Assoc Nurses AIDS Care [Internet]. 2017;28(4):633-43. doi: https://doi.org/10.1016/j.jana.2017.03.007

Towe SL, Hartsock JT, Xu Y, Meade CS. Web-based cognitive training to improve working memory in persons with co-occurring HIV infection and cocaine use disorder: Outcomes from a randomized controlled trial. AIDS Behav [Internet]. 2020; 25(5):1542-1551. doi: https://doi.org/10.1007/s10461-020-02993-0

Linares R, Borella E, Lechuga MT, Carretti B, Pelegrina S. Nearest transfer effects of working memory training: A comparison of two programs focused on working memory updating. PLOS ONE [Internet]. 2019;14(2):e0211321. doi: https://doi.org/10.1371/journal.pone.0211321

Waris O, Soveri A, Laine M. Transfer after Working Memory Updating Training. PLOS ONE [Internet]. 2015;10(9): e0138734. doi: https://doi.org/10.1371/journal.pone.0138734

Schwarb H, Nail J, Schumacher EH. Working memory training improves visual short-term memory capacity. Psychological Research [Internet]. 2016;80(1):128-48. doi: https://doi.org/10.1007/s00426-015-0648-y

Fellman D, Jylkkä J, Waris O, Soveri A, Ritakallio L, Haga S, et al. The role of strategy use in working memory training outcomes. Journal of Memory and Language [Internet]. 2020;110:104064. doi: https://doi.org/10.1016/j.jml.2019.104064

Gordon S, Todder D, Deutsch I, Garbi D, Alkobi O, Shriki O, et al. Effects of neurofeedback and working memory-combined training on executive functions in healthy young adults. Psychol Res [Internet]. 2020;84(6):1586-609. doi: https://doi.org/10.1007/s00426-019-01170-w

Xiu L, Zhou R, Jiang Y. Working memory training improves emotion regulation ability: Evidence from HRV. Physiol Behav [Internet]. 2016;155:25-9. doi: https://doi.org/10.1016/j.physbeh.2015.12.004

Maraver MJ, Bajo MT, Gomez-Ariza CJ. Training on Working Memory and Inhibitory Control in Young Adults. Frontiers in Human Neuroscience [Internet]. 2016;10. doi: https://doi.org/10.3389/fnhum.2016.00588

Cohen N, Margulies DS, Ashkenazi S, Schaefer A, Taubert M, Henik A, et al. Using executive control training to suppress amygdala reactivity to aversive information. Neuroimage [Internet]. 2016;125:1022-1031. doi: https://doi.org/10.1016/j.neuroimage.2015.10.069

Namratha HG, George VM, Bajaj G, Mridula J, Bhat JS. Effect of yoga and working memory training on cognitive communicative abilities among middle aged adults. Complement Ther Clin Pract [Internet]. 2017;28:92-100. doi: https://doi.org/10.1016/j.ctcp.2017.05.007

Tallus J, Soveri A, Hämäläinen H, Tuomainen J, Laine M. Effects of Auditory Attention Training with the Dichotic Listening Task: Behavioural and Neurophysiological Evidence. PLOS ONE [Internet]. 2015;10(10):e0139318. doi: https://doi.org/10.1371/journal.pone.0139318

Bennike IH, Wieghorst A, Kirk U. Online-based Mindfulness Training Reduces Behavioral Markers of Mind Wandering. Journal of Cognitive Enhancement [Internet]. 2017;1(2):172-181. doi: https://doi.org/10.1007/s41465-017-0020-9

Olfers KJF, Band GPH. Game-based training of flexibility and attention improves task-switch performance: near and far transfer of cognitive training in an EEG study. Psychol Res [Internet]. 2018;82(1):186-202. doi: https://doi.org/10.1007/s00426-017-0933-z

Etherton JL, Oberle CD, Rhoton J, Ney A. Effects of Cogmed working memory training on cognitive performance. Psychol Res [Internet]. 2019;83(7):1506-18. doi: https://doi.org/10.1007/s00426-018-1012-9

Zwilling CE, Daugherty AM, Hillman CH, Kramer AF, Cohen NJ, Barbey AK. Enhanced decision-making through multimodal training. npj Sci Learn [Internet]. 2019;4(1):1-10. doi: https://doi.org/10.1038/s41539-019-0049-x

Baniqued PL, Allen CM, Kranz MB, Johnson K, Sipolins A, Dickens C, et al. Working Memory, Reasoning, and Task Switching Training: Transfer Effects, Limitations, and Great Expectations? PLOS ONE [Internet]. 2015;10(11):e0142169. doi: https://doi.org/10.1371/journal.pone.0142169

Daugherty AM, Zwilling C, Paul EJ, Sherepa N, Allen C, Kramer AF, et al. Multi-modal fitness and cognitive training to enhance fluid intelligence. Intelligence [Internet]. 2018;66:32-43. doi: https://doi.org/10.1016/j.intell.2017.11.001

Wells A, Parong J, Mayer RE. Limits on Training Inhibitory Control with a Focused Video Game. J Cogn Enhanc [Internet]. 2021;5(1):83-98. doi: https://doi.org/10.1007/s41465-020-00184-2

Shahar N, Pereg M, Teodorescu AR, Moran R, Karmon-Presser A, Meiran N. Formation of abstract task representations: Exploring dosage and mechanisms of working memory training effects. Cognition [Internet]. 2018;181:151-159. doi: https://doi.org/10.1016/j.cognition.2018.08.007

Schmicker M, Müller P, Schwefel M, Müller NG. Attentional Filter Training but Not Memory Training Improves Decision-Making. Frontiers in Human Neuroscience [Internet]. 2017;11:138. doi: https://doi.org/10.3389/fnhum.2017.00138

Zhao X, Wang H, Maes JHR. Training and transfer effects of extensive task-switching training in students. Psychological Research [Internet]. 2020;84(2):389-403. doi: https://doi.org/10.1007/s00426-018-1059-7

Hilbert S, Schwaighofer M, Zech A, Sarubin N, Arendasy M, Bühner M. Working memory tasks train working memory but not reasoning: A material- and operation-specific investigation of transfer from working memory practice. Intelligence [Internet]. 2017;61:102-114. doi: https://doi.org/10.1016/j.intell.2017.01.010

Pereg M, Shahar N, Meiran N. Can we learn to learn? The influence of procedural working-memory training on rapid instructed-task-learning. Psychological Research. [Internet]. 2019;83:132-46. doi: https://doi.org/10.1007/s00426-018-1122-4

Hogrefe AB, Studer-Luethi B, Kodzhabashev S, Perrig WJ. Mechanisms Underlying N-back Training: Response Consistency During Training Influences Training Outcome. Journal of Cognitive Enhancement [Internet]. 2017;4(1):406-18. doi: https://doi.org/10.1007/s41465-017-0042-3

Foster JL, Harrison TL, Hicks KL, Draheim C, Redick TS, Engle RW. Do the effects of working memory training depend on baseline ability level? J Exp Psychol Learn Mem Cogn. [Internet]. 2017;43(11):1677-1689. doi: https://doi.org/10.1037/xlm0000426

Flegal KE, Ragland JD, Ranganath C. Adaptive task difficulty influences neural plasticity and transfer of training. NeuroImage [Internet]. 2019;188:111–121. doi: https://doi.org/10.1016/j.neuroimage.2018.12.003

Talanow T, Ettinger U. Effects of task repetition but no transfer of inhibitory control training in healthy adults. Acta Psychol (Amst) [Internet]. 2018;187:37-53. doi: https://doi.org/10.1016/j.actpsy.2018.04.016

Martinčević M, Vranić A. Casual Game or Cognitive Gain: Multitask Casual Game as a Training for Young Adults. Journal of Cognitive Enhancement. 2020;434-445. doi: https://doi.org/10.1007/s41465-020-00173-5

Strobach T, Huestegge L. Evaluating the Effectiveness of Commercial Brain Game Training with Working-Memory Tasks. J Cogn Enhanc [Internet]. 2017;1(4):539-58. doi: https://doi.org/10.1007/s41465-017-0053-0

Downloads

Download data is not yet available.